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Abstract 
The approach presented in this paper focus the problem of 
obtaining quickly time to impact data and extracting scene 
information from these data. The use of log-polar vision 
reduces the amount of data to be processed and simplifies 
the time to impact computation to a simple division of 
gradients and temporal derivatives. A custom hardware 
approach has been made for implementing a parallel 
processing pipeline with the aim of speeding-up the time to 
impact computation. Taking into account that the time-to-
contact computation module is addressed to autonomous 
vehicles, the hardware implementation must be small and 
low-power demanding. The custom hardware module 
output will give time to impact maps that must be 
interpreted in order to obtain reliable scene information. 
Different objects placed at separated distances give 
different areas in the time to impact maps. These image 
sectors are a time to impact value distributions that present 
spatial neighborhood. Different times to impact areas are 
associated to different objects and can be classified through 
segmentation strategies. 
 

1. Introduction 
Sensor data fusion based models are strategies for allowing 
safe autonomous vehicle navigation in non-structured 
environments [1]. Time-to-impact computation form optical 
flow is an interesting algorithm useful for robotic navigation 
[2]. Avoiding collisions to static obstacles is a time-
consuming task in non-structured environments. The 
accuracy needed for achieving a reliable navigation requires 
complex computations for obtaining precise data, and this 
requirement seems conflicting with the fast time reaction 
needed for an autonomous mobile vehicle. 

In this way a custom or hardware approach can be 
interesting for solving real-time constrains. Programmable 
logic offers a wide spectrum of devices useful for 
implementing custom hardware from a high-level hardware 
description language. 

On the other hand, space-variant vision emerges as a useful 
image representation, taking into account that information 
reduction is interesting for a system with hardware 
restrictions. Particularly, log-polar mapping shows, as a 
particular case of space-variant vision, interesting properties 
in addition to the selective reduction of information [3], [4]. 
Especially, the time to impact computation can be easily 

obtained from the optical flow map when the camera 
movement is along the optical axis [5]. Figure 1 shows the 
sensor plane and its relationship with the computation 
plane. 

 

 

Fig. 1. Log-polar transformation 

 

Time to impact computation from optical flow in the 
Cartesian plane is a complex task. The computation of 
optical flow is as reliable as time-consuming [6] [7]. 
Therefore, obtaining time to impact computation maps from 
the Cartesian optical flow can be an impossible real-time 
task. 

Otherwise, if the sensor has a polar distribution, the 
movement can be assumed that only has a radial 
component. Moreover, if the sensor size and density follows 
an exponential law as the log-polar system coordinate does, 
it can be proved [5] that the time to impact value is 
proportional to the division between the radial gradient and 
first order temporal derivative. The proportionality constant 
is related with the sensor geometry. 

It should be noted that this computation is simpler that its 
equivalent Cartesian. In this case only the gradient along the 
radial coordinate and the differences between two images 
must be taken into account. The gradient can be computed 
as the gray level difference between two neighbor pixels 
placed at consecutive rings. The temporal derivative 
analogously can be calculated as a simple difference 
between the gray levels of the same pixel into two 
successive images. This simple approach can be improved 
through the use of a window of pixels instead of two 
neighbor pixels for computing these differential magnitudes 
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[8]. In spite of this method for obtaining more accurate time 
to impact values, a statistical distribution appears. The 
statistical treatment of these distributions will determine the 
reliable presence of objects at different depths. 

3. The pipelined computing approach 
The log-polar representation used has been the 
transformation made by the CMOS log-polar sensor [9]. 

If the log-polar image acquisition system delivers a high 
ratio of images per second it will be possible to obtain a 
large quantity of time to impact maps. If the vehicle 
processor computes the radial gradient and the first order 
temporal derivative sequentially, the processing stage can 
be an unavoidable bottleneck. 

Differential algorithms, as is the time to impact computation 
proposed, can be described globally as algorithms that 
apply several simple local differences to the entire image. 
Differential approaches use the temporal and spatial 
derivatives of the image sequence, as optical flow methods 
do, but they do not try to build explicitly the optical flow 
field. The meaning of local here includes the temporal 
dimension, so it is not reduced to spatial local differences, 
as is the gradient. The operations involved are simple and 
suitable for parallel implementation. These algorithms are 
also computationally intensive due to the image size, but 
they benefit from data reduction. These simple 
computations can be applied in parallel as a processing 
pipeline to the log-polar pixel stream supplied by the 
camera. In this way, a simple custom module that has log-
polar images as input and time to impact maps as output has 
been implemented. 

The processing module is a pipeline of three processing 
elements (PEs) that have an SRAM-based FPGA, two 
double port memories and a local memory [10]. The double 
ports memories are used for speeding-up the computation of 
temporal differences since are utilized as intermediate PE 
frame-grabber. Moreover, the pipelined take advantage of 
the two ports of these memories for accelerating the data 
flow.  

The local memory is useful for storing intermediate 
computations since the FPGAs have only 820 flip-flops and 
most of them are needed for defining the PE functionality. 

Each FPGA included into a PE has been designed with 
synthetisable VHDL, implementing a Finite State Machine 
(FSM) for communicating with previous and next PE, and 
for implementing its own processing functionality. The 
communication protocol among PEs follows a simple 
asynchronous protocol identical to all PEs. Moreover, this 
data-flow scheme is the same for obtaining log-polar images 
for the first PE of the pipeline and for supplying results to 
each stage. 

The log-polar camera is connected to a frame-grabber that 
is controlled by the robot navigation system. The frame-
grabber supplies log-polar images to the first PE of the 
pipeline. The PEs are interconnected with a plain parallel 
cable, and they are also connected to a common small rack, 
containing the common control and power supply lines. The 
last PE is also connected to the frame-grabber to receive 
results from the processing pipeline. Then the processed 
data are accessed by the vehicle processor, which 
implements the software stage as another running process. 

The connection files that must be downloaded at each 
FPGA are generated once the synthetisable VHDL has been 
simulated for all the PEs of the pipeline. The autonomous 
vehicle stores these binary files and programs each PE 
individually through a PCI pipeline control/acquisition card. 

A generic log-polar vision algorithm must be split into 
different well-balanced stages. The input to the first PE is a 
sequence of log-polar images, but the output of this first PE, 
and subsequently the inputs of any other PE, may be an 
ordered data structure. 

The reconfigurable pipeline is being used for implementing 
several differentia image processing algorithms, between 
them the time to impact algorithm, which has been split into 
four processing stages. The nature of the three top stages 
suggests its implementation using the PEs described before 
since they are simple systematic operations easily 
formulated through hardware. 

Figure 2 shows an overview of the time to impact pipelining 
implementation within the custom processing pipeline and 
the software interpretation stage.  

 

  

Fig. 2. Time to impact processing pipeline 

 

• Image smoothing. It is not possible compute 
differential magnitudes both: if there are not 
differences between images or if there are gray level 
edges in the image. This smoothing has been made 
taking into account a three dimensions convolution 
mask for obtaining a medium gray level for each pixel. 

• First order differentiation and radial gradient 
computation. This PE has as input smoothed images 
and computes gray level differences between:  
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• pixels at successive rings (radial gradient) 

• and pixels at successive images (first order temporal 
derivative) 

For making these computations they have been used the 
double port and local memories for storing different 
sequence images. 

• Time to impact map computation. This third and last 
hardware stage divides both values for obtaining time 
to impact values, giving as output a time to impact 
value at each pixel. This stage makes an integer 
division of both values. More complex algorithms that 
allow floating point division did not fit within the 
FPGA of a single PE. 

• Time to impact map interpretation. Ideally each 
object (if it is place perpendicularly to the camera 
position) should give the same time to impact value at 
its pixels. Unfortunately, due to the non exactly 
accomplishment of several algorithm constrains there is 
a time to impact statistical distribution around the real 
value. This non-achievement of the ideal circumstances 
is directly related with non-differentiable conditions at 
the log-polar images. Analogously, if the camera 
movement occurs non-along its optical axis the method 
will give meaningless values. In this way, an 
interpretation map stage must read the time to impact 
maps and extract reliable information about objects 
presence. 

 

4. Obtaining time to impact data from log-polar 
sequences 

Several experiments has been performed in order to identify 
which kind of statistical distributions will appear instead of 
a single time to impact value for a single object. Figure 3 
shows a sequence where the log-polar camera has been 
mounted in a mobile platform, having a constant 
perpendicularly approaching movement to two objects.  

These two objects are separated by 75 cm and initially the 
camera starts its movement with a distance of 75 cm from 
the first one. It should be note that the central white area 
corresponds to the central sensor region called fovea that 
does not follow the log-polar growth law expressed at figure 
1 due to technological reasons. Since this zone does not 
conform this transformation the time to impact 
simplification assumed by the log-polar transformation does 
not apply, so these pixels have been eliminated. 

The speed of the camera has been fixed to 5 cm/s and the 
image acquisition system will deliver 10 images per second. 
It should be noted that the system is able to deliver a higher 
image rate, but it makes no sense since two very close 
images will give negligible differences, making meaningless 
all the differential computations. This condition should be 
carefully taken into account since the special geometry of 
the log-polar sensor (big pixel size at the periphery) and the 
high image acquisition and processing rate could remove 
differences between two consecutive images. 

  

  

Fig. 3. Experiment sequence 

 

There is a minimum acquisition interval between two 
images which guarantees well defined differences. This 
time interval has been analytically evaluated for 
implementing a motion detection differential algorithm with 
log-polar images at the reconfigurable pipeline [11], but it 
is useful for any differential log-polar algorithm. The 
acquisition interval depends of the camera velocity, sensor 
geometry and object gray levels. 

The time to impact computation maps resulting from the 
sequence of figure 3 should give theoretically two constant 
values at each object surface, but as it has been appointed 
before, a statistical distribution appear for each object. 
Moreover, not all the time to impact values computed at 
each surface must be taken into account. It must be 
remarked that if the surface has a constant gray level no 
differences will appear both: at the radial gradient and at the 
temporal derivative. In this way, the time to impact must be 
computed when the differences exist and are well defined. 
Pixels that contribute to the time to impact value are marked 
at figure 3 as white pixels. These pixels belong to the object 
edges than once smoothed will give a constant gradient, 
useful for these differential computations. 

Time to impact computation is very sensible to noise due to 
its differential nature. The gray level function I(ξ,θ,t) must 
be continuous and differentiable at all the points where the 
differential magnitudes are computed. Nevertheless the 
image is clearly a discrete function both, in time and in 
space. Despite of this source of noise the assumption 
usually adopted is to suppose that the gray level image is 
continuous if there have been any previous smoothing. 

Moreover, inaccurate small temporal derivatives will give 
abnormally large time to impact values. Only differential 
magnitudes larger than an experimental threshold, thus with 
a small relative error, must be divided. 

Figure 4 shows, as an example, time to impact histograms 
obtained from the last hardware stage for the images shown 
at figure 3. 
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The X-axis at each distribution represents the time to 
impact value and the Y-axis the occurrences for each time 
to impact value. 

It can be shown the large dispersion that appear at the time 
to impact maps obtained from the hardware stage. Despite 
of these deficient initial results it is possible to see how 
there are two groups of values that will correspond to the 
two objects with the expected different time to impact. 

The most far-away object presents less valid points for 
obtaining a reliable time to impact since the variations are 
smaller and thus the dispersion at the values will be higher. 
These points correspond to the small distribution placed at 
the right of the figures (higher time to impact value). 

Alternatively, the closest object presents a great quantity of 
points and these points with less dispersion. These results 
are better since the closest object will present larger 
differences between images. Thus the relative error will be 
smallest and the computed value will more reliable. 

The time to impact maps present a large dispersion and 
despite of the two Gaussian distributions that can be 
guessed from a visual first look, a deeper statistical study 
must be applied in the software stage. 

 
 

  

Fig. 4. Time to impact histograms corresponding to the 
experiment sequence 

 

5. Conclusions 
It has been presented a fast implementation of the log-polar 
time to impact computation algorithm. This implementation 
combines both: a custom hardware pipeline for accelerating 
the simple computation of the time to impact values at each 
pixel, and software stage that will extract the time to impact 
values from the statistical distributions that are the result of 
the hardware stage. 
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