
 1/1

Estimating time-to-impact data with an
autonomous vehicle portable pipelined

architecture

José A. Boluda, Fernando Pardo, Esther de Ves

Departament d’Informàtica. Universitat de València

Avda. Vicent Andrés Estellés S/N. 46100 Burjassot (SPAIN)

 Phone: +34 96 3160 412/410 Fax: +34 96 3160 418 email: Jose.A.Boluda@uv.es

Abstract
The approach presented in this paper focus the problem of
obtaining quickly time to impact data and extracting scene
information from these data. The use of log-polar vision
reduces the amount of data to be processed and simplifies
the time to impact computation to a simple division of
gradients and temporal derivatives. A custom hardware
approach has been made for implementing a parallel
processing pipeline with the aim of speeding-up the time to
impact computation. Taking into account that the time-to-
contact computation module is addressed to autonomous
vehicles, the hardware implementation must be small and
low-power demanding. The custom hardware module
output will give time to impact maps that must be
interpreted in order to obtain reliable scene information.
Different objects placed at separated distances give
different areas in the time to impact maps. These image
sectors are a time to impact value distributions that present
spatial neighborhood. Different times to impact areas are
associated to different objects and can be classified through
segmentation strategies.

1. Introduction
Sensor data fusion based models are strategies for allowing
safe autonomous vehicle navigation in non-structured
environments [1]. Time-to-impact computation form optical
flow is an interesting algorithm useful for robotic navigation
[2]. Avoiding collisions to static obstacles is a time-
consuming task in non-structured environments. The
accuracy needed for achieving a reliable navigation requires
complex computations for obtaining precise data, and this
requirement seems conflicting with the fast time reaction
needed for an autonomous mobile vehicle.

In this way a custom or hardware approach can be
interesting for solving real-time constrains. Programmable
logic offers a wide spectrum of devices useful for
implementing custom hardware from a high-level hardware
description language.

On the other hand, space-variant vision emerges as a useful
image representation, taking into account that information
reduction is interesting for a system with hardware
restrictions. Particularly, log-polar mapping shows, as a
particular case of space-variant vision, interesting properties
in addition to the selective reduction of information [3], [4].
Especially, the time to impact computation can be easily

obtained from the optical flow map when the camera
movement is along the optical axis [5]. Figure 1 shows the
sensor plane and its relationship with the computation
plane.

Fig. 1. Log-polar transformation

Time to impact computation from optical flow in the
Cartesian plane is a complex task. The computation of
optical flow is as reliable as time-consuming [6] [7].
Therefore, obtaining time to impact computation maps from
the Cartesian optical flow can be an impossible real-time
task.

Otherwise, if the sensor has a polar distribution, the
movement can be assumed that only has a radial
component. Moreover, if the sensor size and density follows
an exponential law as the log-polar system coordinate does,
it can be proved [5] that the time to impact value is
proportional to the division between the radial gradient and
first order temporal derivative. The proportionality constant
is related with the sensor geometry.

It should be noted that this computation is simpler that its
equivalent Cartesian. In this case only the gradient along the
radial coordinate and the differences between two images
must be taken into account. The gradient can be computed
as the gray level difference between two neighbor pixels
placed at consecutive rings. The temporal derivative
analogously can be calculated as a simple difference
between the gray levels of the same pixel into two
successive images. This simple approach can be improved
through the use of a window of pixels instead of two
neighbor pixels for computing these differential magnitudes

 2/2

[8]. In spite of this method for obtaining more accurate time
to impact values, a statistical distribution appears. The
statistical treatment of these distributions will determine the
reliable presence of objects at different depths.

3. The pipelined computing approach
The log-polar representation used has been the
transformation made by the CMOS log-polar sensor [9].

If the log-polar image acquisition system delivers a high
ratio of images per second it will be possible to obtain a
large quantity of time to impact maps. If the vehicle
processor computes the radial gradient and the first order
temporal derivative sequentially, the processing stage can
be an unavoidable bottleneck.

Differential algorithms, as is the time to impact computation
proposed, can be described globally as algorithms that
apply several simple local differences to the entire image.
Differential approaches use the temporal and spatial
derivatives of the image sequence, as optical flow methods
do, but they do not try to build explicitly the optical flow
field. The meaning of local here includes the temporal
dimension, so it is not reduced to spatial local differences,
as is the gradient. The operations involved are simple and
suitable for parallel implementation. These algorithms are
also computationally intensive due to the image size, but
they benefit from data reduction. These simple
computations can be applied in parallel as a processing
pipeline to the log-polar pixel stream supplied by the
camera. In this way, a simple custom module that has log-
polar images as input and time to impact maps as output has
been implemented.

The processing module is a pipeline of three processing
elements (PEs) that have an SRAM-based FPGA, two
double port memories and a local memory [10]. The double
ports memories are used for speeding-up the computation of
temporal differences since are utilized as intermediate PE
frame-grabber. Moreover, the pipelined take advantage of
the two ports of these memories for accelerating the data
flow.

The local memory is useful for storing intermediate
computations since the FPGAs have only 820 flip-flops and
most of them are needed for defining the PE functionality.

Each FPGA included into a PE has been designed with
synthetisable VHDL, implementing a Finite State Machine
(FSM) for communicating with previous and next PE, and
for implementing its own processing functionality. The
communication protocol among PEs follows a simple
asynchronous protocol identical to all PEs. Moreover, this
data-flow scheme is the same for obtaining log-polar images
for the first PE of the pipeline and for supplying results to
each stage.

The log-polar camera is connected to a frame-grabber that
is controlled by the robot navigation system. The frame-
grabber supplies log-polar images to the first PE of the
pipeline. The PEs are interconnected with a plain parallel
cable, and they are also connected to a common small rack,
containing the common control and power supply lines. The
last PE is also connected to the frame-grabber to receive
results from the processing pipeline. Then the processed
data are accessed by the vehicle processor, which
implements the software stage as another running process.

The connection files that must be downloaded at each
FPGA are generated once the synthetisable VHDL has been
simulated for all the PEs of the pipeline. The autonomous
vehicle stores these binary files and programs each PE
individually through a PCI pipeline control/acquisition card.

A generic log-polar vision algorithm must be split into
different well-balanced stages. The input to the first PE is a
sequence of log-polar images, but the output of this first PE,
and subsequently the inputs of any other PE, may be an
ordered data structure.

The reconfigurable pipeline is being used for implementing
several differentia image processing algorithms, between
them the time to impact algorithm, which has been split into
four processing stages. The nature of the three top stages
suggests its implementation using the PEs described before
since they are simple systematic operations easily
formulated through hardware.

Figure 2 shows an overview of the time to impact pipelining
implementation within the custom processing pipeline and
the software interpretation stage.

Fig. 2. Time to impact processing pipeline

• Image smoothing. It is not possible compute
differential magnitudes both: if there are not
differences between images or if there are gray level
edges in the image. This smoothing has been made
taking into account a three dimensions convolution
mask for obtaining a medium gray level for each pixel.

• First order differentiation and radial gradient
computation. This PE has as input smoothed images
and computes gray level differences between:

 3/3

• pixels at successive rings (radial gradient)

• and pixels at successive images (first order temporal
derivative)

For making these computations they have been used the
double port and local memories for storing different
sequence images.

• Time to impact map computation. This third and last
hardware stage divides both values for obtaining time
to impact values, giving as output a time to impact
value at each pixel. This stage makes an integer
division of both values. More complex algorithms that
allow floating point division did not fit within the
FPGA of a single PE.

• Time to impact map interpretation. Ideally each
object (if it is place perpendicularly to the camera
position) should give the same time to impact value at
its pixels. Unfortunately, due to the non exactly
accomplishment of several algorithm constrains there is
a time to impact statistical distribution around the real
value. This non-achievement of the ideal circumstances
is directly related with non-differentiable conditions at
the log-polar images. Analogously, if the camera
movement occurs non-along its optical axis the method
will give meaningless values. In this way, an
interpretation map stage must read the time to impact
maps and extract reliable information about objects
presence.

4. Obtaining time to impact data from log-polar
sequences

Several experiments has been performed in order to identify
which kind of statistical distributions will appear instead of
a single time to impact value for a single object. Figure 3
shows a sequence where the log-polar camera has been
mounted in a mobile platform, having a constant
perpendicularly approaching movement to two objects.

These two objects are separated by 75 cm and initially the
camera starts its movement with a distance of 75 cm from
the first one. It should be note that the central white area
corresponds to the central sensor region called fovea that
does not follow the log-polar growth law expressed at figure
1 due to technological reasons. Since this zone does not
conform this transformation the time to impact
simplification assumed by the log-polar transformation does
not apply, so these pixels have been eliminated.

The speed of the camera has been fixed to 5 cm/s and the
image acquisition system will deliver 10 images per second.
It should be noted that the system is able to deliver a higher
image rate, but it makes no sense since two very close
images will give negligible differences, making meaningless
all the differential computations. This condition should be
carefully taken into account since the special geometry of
the log-polar sensor (big pixel size at the periphery) and the
high image acquisition and processing rate could remove
differences between two consecutive images.

Fig. 3. Experiment sequence

There is a minimum acquisition interval between two
images which guarantees well defined differences. This
time interval has been analytically evaluated for
implementing a motion detection differential algorithm with
log-polar images at the reconfigurable pipeline [11], but it
is useful for any differential log-polar algorithm. The
acquisition interval depends of the camera velocity, sensor
geometry and object gray levels.

The time to impact computation maps resulting from the
sequence of figure 3 should give theoretically two constant
values at each object surface, but as it has been appointed
before, a statistical distribution appear for each object.
Moreover, not all the time to impact values computed at
each surface must be taken into account. It must be
remarked that if the surface has a constant gray level no
differences will appear both: at the radial gradient and at the
temporal derivative. In this way, the time to impact must be
computed when the differences exist and are well defined.
Pixels that contribute to the time to impact value are marked
at figure 3 as white pixels. These pixels belong to the object
edges than once smoothed will give a constant gradient,
useful for these differential computations.

Time to impact computation is very sensible to noise due to
its differential nature. The gray level function I(ξ,θ,t) must
be continuous and differentiable at all the points where the
differential magnitudes are computed. Nevertheless the
image is clearly a discrete function both, in time and in
space. Despite of this source of noise the assumption
usually adopted is to suppose that the gray level image is
continuous if there have been any previous smoothing.

Moreover, inaccurate small temporal derivatives will give
abnormally large time to impact values. Only differential
magnitudes larger than an experimental threshold, thus with
a small relative error, must be divided.

Figure 4 shows, as an example, time to impact histograms
obtained from the last hardware stage for the images shown
at figure 3.

 4/4

The X-axis at each distribution represents the time to
impact value and the Y-axis the occurrences for each time
to impact value.

It can be shown the large dispersion that appear at the time
to impact maps obtained from the hardware stage. Despite
of these deficient initial results it is possible to see how
there are two groups of values that will correspond to the
two objects with the expected different time to impact.

The most far-away object presents less valid points for
obtaining a reliable time to impact since the variations are
smaller and thus the dispersion at the values will be higher.
These points correspond to the small distribution placed at
the right of the figures (higher time to impact value).

Alternatively, the closest object presents a great quantity of
points and these points with less dispersion. These results
are better since the closest object will present larger
differences between images. Thus the relative error will be
smallest and the computed value will more reliable.

The time to impact maps present a large dispersion and
despite of the two Gaussian distributions that can be
guessed from a visual first look, a deeper statistical study
must be applied in the software stage.

Fig. 4. Time to impact histograms corresponding to the
experiment sequence

5. Conclusions
It has been presented a fast implementation of the log-polar
time to impact computation algorithm. This implementation
combines both: a custom hardware pipeline for accelerating
the simple computation of the time to impact values at each
pixel, and software stage that will extract the time to impact
values from the statistical distributions that are the result of
the hardware stage.

6. Acknowledges

This work has been supported by the Ministerio de Ciencia
y Tecnología and FEDER under project TIC2001-3546.

References
[1] D. Fox, W. Burgard, S. Thrun, “The dynamic window

approach to collision avoidance”, IEEE Robotics and
Automation, 4(1), 1997.

[2] N. Ancona, T. Poggio, “Optical Flow from 1-D
Correlation: Application to a Simple Time-to-Crash
Detector”, International Journal of Computer Vision,
Vol. 14, pp. 131-146, 1995.

[3] C. Capurro, F. Panerai, G. Sandini, “Dynamic
Vergence Using Log-Polar Images”, International

Journal of Computer Vision, Vol 24(1), pp. 79-94,
1997.

[4] F. Jurie, “A new log-polar mapping for space variant
imaging. Application to face detection and tracking”,
Pattern recognition, Vol. 32(5), pp. 865-975, 1999.

[5] M. Tistarelli, G. Sandini “On the advantages of polar
and log-polar mapping for direct estimation of time to
impact from optical flow”, IEEE Trans. on PAMI, Vol
15(4), pp. 401-410, 1991.

[6] J.L. Barron, D.J. Fleet, S.S. Beauchemin,
“Performance of Optical Flow Techniques”
International Journal of Computer Vision, Vol 12(1),
pp. 43-77, 1994.

[7] S. S. Beauchemin, J. L. Barron, “The computation of
optical flow”, ACM Computing Surveys, Vol. 27(3),
pp. 433-467, 1995.

[8] F. Pardo, J.A. Boluda, I. Coma, “High speed log-polar
time to crash calculation of mobile vehicles”, Image
Processing & Communications, (To appear).

[9] F. Pardo, B. Dierickx, D. Scheffer. “Space-Variant
Non-Orthogonal Structure CMOS Image Sensor
Design”, IEEE Journal of Solid-State Circuits, Vol.
33(6), pp. 842-849, 1998.

[10] J.A. Boluda F. Pardo, “A reconfigurable architecture
for autonomous visual navigation”, Machine Vision
and Applications, (To appear).

[11] J.A. Boluda, J.J. Domingo. “On the advantages of
combining differential algorithms, pipelined
architectures and log-polar vision for detection of self-
motion from a mobile robot”. Robotics and
Autonomous Systems. Vol. 37(4), pp. 283-296, 2001.

