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Abstract 
There are several methods to measure movement in front of 
a mobile vehicle (robot) equipped with a camera. Some 
methods detect movement from the analysis of the optical 
flow, while other methods detect movement from the 
displacement of objects or part of the objects (corners, 
edges, etc.) Those methods based on the optical flow are 
suitable for high speed analysis (say 25 images per second) 
but they are not very accurate and treat the image as a 
whole, being it difficult to separate different objects in the 
scene. Those methods based on image feature extraction are 
good for object recognition and clustering, that can be more 
precise than other methods, but they usually require lot of 
computations to yield a result, making it difficult to 
implement these methods in a navigation system of a robot 
or mobile vehicle. In this article we present a technique that 
allows high-speed movement analysis using the accurate 
displacement measure of the feature extraction and 
correlation method. 

1. Introduction 
Most of 2D feature detectors employed in image processing 
are computationally expensive and are not suitable for high 
speed image analysis (25 frames/s). It is possible to increase 
the computation speed by loosing accuracy or employing 
powerful computer systems that are not adequate for mobile 
robots. There is a different approach to successfully employ 
this feature extraction on mobile robots, and it is to 
decrease the global visual data to be processed. This 
reduction is accomplished by means of the log-polar 
mapping that concentrates pixels in the image center (the 
most interesting part) and decreases resolution toward the 
periphery (the least interesting part) [1]. The log-polar 
mapping has the advantage of selective image data 
reduction, but also has some mathematical invariance 
properties (scaling and rotation) that are especially useful 
for image processing, particularly for a robot moving ahead. 

Figure 1 shows the transformation of the scaling of an 
approaching object into a linear displacement. The focal 
plane (camera) and the computational plane (array in the 
computer memory) are shown in this figure. The original 
object (black ring) is a centered ring in the focal plane, but 
it is converted to a straight line in the computational plane 
after the log-polar transformation. The scaling produced by 
the camera approaching the ring is converted in just a 

displacement in one of the orthogonal axis. This interesting 
property can be exploited to simplify computations of such 
approaching movements, commonly found in the movement 
of robots toward an objective. 

Fig. 1. Camera approaching to an object (black ring) in log-polar 
coordinates 

The log-polar transformation has also the advantage of the 
selective reduction of information. The special log-polar 
pixel distribution has more resolution in the interesting parts 
of the scene (center) reducing the number of pixels toward 
the periphery; the view field is kept while the total pixel 
count is reduced. 

We use a resolution of 76 rings by 128 pixels per ring in 
our experiments. This makes a total of 9728 pixels to be 
processed. Comparing this data (roughly 10 K), with the 
data of a standard 512x512 Cartesian image (256 K) the 
difference is quite significant. The difference in the number 
of pixels to be processed has a direct impact on the rates at 
which the images can be processed. Depending on the 
image analysis, this save of time can be of several orders of 
magnitude while the precision is still kept at acceptable 
values. 

2. Feature extraction 
Not many feature extraction methods can be employed in 
the log-polar domain due to the special mathematic 
characteristics of this mapping. One of them is the 
distortion suffered by objects after transformation (the 
shape of any object is not constant and depends on its 
position in the log-polar plane). But there is a characteristic 
of the log-polar mapping that makes it possible to employ 
object detection methods: since the log-polar is a conformal 
transform, angles in Cartesian coordinates are preserved in 
the log-polar coordinate system. We therefore employed a 
feature extraction based on corner and junction detection 
that allows the measurement of relevant point movement 
and object detection despite the fact that the object changes 
its shape as it moves (or the robot moves). 

We have chosen a 2D gray-level detector based on a 
statistical analysis of the gradient orientations in a circular 
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neighborhood of the point considered as a possible 2D 
feature, since this method is not computationally expensive 
and is more robust, especially for the log-polar mapping, 
than other corner detectors.  

According to this approach [2], a corner point p can be 
defined as a point in the image whose gradient is not null 
and for which the orientations of the edges that converge in 
it are grouped around two (or more) different modes. Thus, 
it is proposed the hypothesis that a corner, where n edges 
converge, can be modeled as a mixture of n von Mises 
distributions as follows [3]: 
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where ìi and ki  are defined for each population and pi is the 
mixing proportion of the ith population. Therefore, the 
method to detect 2D features is to study the distribution of 
the orientations and to test the null hypothesis: the 
hypothesis that the distribution of orientations constitutes a 
mixture of two von Mises distributions. If the hypothesis 
can not be rejected, the point is assumed to be a corner 
where two edges converge. The test used for this purpose is 
the Watson-Stephens test. 

Two important remarks about the method: the 
neighborhood analyzed in each point should be large 
enough so as to contain a sufficient number of points for the 
test to be applied and non-maxima suppression is done to 
keep only those points which have the highest significance 
of its corresponding hypothesis in a fixed neighborhood. 
This is done to avoid duplications of the same corner point.  

The selection of this interest point detector is due to its 
simplicity (it is easier to implement than others in literature) 
and it is quite insensitive to contrast. 

3. Object tracking 
There are several methods to measure motion in front of a 
mobile vehicle (robot) equipped with a camera. Some 
methods are based on computing the optical flow whereas 
others detect motion based on the displacement of some 
objects or part of the objects. 

As we explained before, in this work we have adopted the 
second approach for motion analysis: tracking some objects 
in the scene. The objects to track are a set of 2D features 
extracted in each single image of the sequence using the 
corner detector described above. 

This point detector procedure is followed by a matching 
process, which looks for correspondences between these 
interest points. Assuming that interest points have been 
located in all images of a sequence, the correspondence 
between points in consecutive images can be found by using 
the assumption of maximum velocity. This assumption 
implies that a point in the image will correspond to the 
closest point in the next image. 

Using this simple idea we have constructed an algorithm to 
track corner points in the scene: for each point of a frame 
we find the closest point in next image.  

It is possible that new points appear and others disappear; a 
new point appears when there is not any point close enough 
in previous images and a point disappears when there is not 

a near point in next frame. Our algorithm is able to manage 
these events using information from previous frames. 

In order to avoid that several point are candidates to 
correspond with a given interest point, some parameters of 
the algorithms should be selected carefully: the maximum 
velocity parameter and the size of the neighbourhood for 
maxima suppression of interest points (in the 2D point 
detector). The maximum velocity (in pixels) should be 
smaller than the size of the chosen neighbourhood. 

Figure 2 shows four images of the sequence employed for 
the experiments. This sequence has a total of 280 images 
and corresponds to the camera approaching toward two 
objects located at difference distances. The closest object is 
around 150 images far and the latest is 280 images away; it 
takes the whole sequence to impact this last object. The log-
polar computational plane is shown along the real Cartesian 
image. 

 

Fig. 2. Four images (30,100,170,140) of the total sequence in 
Cartesian (up) and log-polar (down) representations 

Figure 3 shows the plot of the trajectories of some detected 
corner points in an instance of the sequence of figure 2 
using the tracking algorithm. The tracking of some corners 
are not correct due to mismatches obtained by the proposed 
algorithm. However, most of the points are tracked 
correctly and their trajectories are as expected (rectilinear 
movement from left to right). 

Fig. 3. Trajectories of the tracked points along the sequence in 
the log-polar domain 
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4. Time to impact computation 
The time to impact of an approaching object is the time 
required by an object to reach the camera. If the camera 
moves, this time to impact is the time employed by the 
camera to reach the first object in its trajectory. This time to 
impact can be calculated from the measurement of object 
speeds at the sensor plane. The use of log-polar coordinates 
simplifies this calculation as it is shown next. 

 
Fig. 4. Pin-hole model of an object approaching the camera 

Figure 4 shows the approaching object (P) projection on the 
camera sensor plane (P’) following the pin-hole camera 
model. From this figure the following relation is straight 
forward: 
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where F(t) is the object (P) distance to the camera focus, R 
is the distance of the object to the camera optical axis, f is 
the camera focus distance and r(t) is the distance of the 
object projection (P’) to the optical axis. F(t) and r(t) 
depend on the time since the object (or the camera) is 
moving. The speed at which the object P is approaching the 
camera is W(t)=dF(t)/dt, and the resulting speed of P’ in the 
sensor plane is V(t)=dr(t)/dt. It is possible to obtain a 
relation between these two speeds deriving equation (2) 
with respect to time: 
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In the other hand, the time to impact (τ) supposing a 
constant approaching speed W(t), can be evaluated by: 
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Now we want an expression for the time to impact that only 
takes into account camera or image parameters. For this 
objective we can take equation (2) to obtain an expression 
for F(t) and equation (3) to obtain an expression for W(t) 
and then substitute in equation (4) to obtain: 
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This is to say that the time to impact computation of an 
approaching object can be calculated as the division of the 
radius of the object projection (image) and the object 
projection speed. Both measurements can be obtained 
directly from image analysis. 

Both magnitudes, r(t) and V(t), may have any spatial 
orientation depending on the approaching object position. It 
means that we have to take into account the velocity 
components in X and Y directions supposing a Cartesian 
representation. 

Now we can consider a camera with a log-polar sensor 
which transformation follows this equation: 
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where ξ(t) is one of the orthogonal components of the log-
polar computational plane as seen on Figure 1. We can 
derive this expression to obtain the velocity in the log-polar 
domain: 
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Substituting this expression in equation (5) we finally obtain 
the equation for the time to impact computation in log-polar 
coordinates: 
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where B is the constant exponential growth factor of the 
log-polar transformation and Vξ(t) is the object projection 
speed in the radial direction measured in the log-polar 
computational plane. 

There are two advantages of the log-polar transformation 
compared to the Cartesian representation [4]: first, there is 
no need of knowing the position of the object in the image, 
since it does not appear in the equation; and second, only 
one component of the velocity must be calculated. This last 
feature is especially important since it simplifies a lot the 
amount of calculus to be performed. 

5. Time to impact results 
The theory involving time to impact computation is very 
simple, but the real implementation of such a theory if not 
so simple [5]. The discrete nature of the images and the 
acquisition itself produce errors with similar magnitude as 
the parameters to be measured. 

A large change in the image (say a displacement of several 
pixels) is necessary to obtain accurate speed measurement 
and thus time to impact. But such a displacement means that 
the object is moving too fast or the image rate is too low. In 
both cases there is no use of calculating the time to impact 
since it could crash immediately after measurement. Time 
to impact should be measured accurately with some time in 
advance. 

It is necessary the use of statistical analysis over a large 
amount of images to obtain an accurate time to impact 
calculation long before the approaching object become 
dangerous. 

We have employed two techniques to obtain accurate time 
to impact. In the first technique we calculate object speed 
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over a large number of object positions obtained from 
different images of the sequence. This method consists on 
storing the last coordinates of an object over time and then 
calculating its speed just performing a least-squares linear 
function fitting. The second technique consists of just a 
calculation of the mean value of the object speeds to obtain 
a global time to impact for each image of the sequence. 

The first technique has the problem of filtering: if the least-
square fitting is performed over a large amount of images, 
the precision increases, but only for far objects with slow 
motion, since nearby objects move so fast that the speed is 
not constant and they could even impact before the 
calculation is done. In the other hand, if we take few images 
to calculate velocity, there are fewer points for the measure 
and we loose precision, and it is not possible to even detect 
movement if the object is far. 

We calculate the speed in two passes to avoid the filter 
effect of fixing a certain number of images for the least-
squares fitting. In the first pass we use the last few 
coordinates of the object, and in the second pass we use 
more points to detect long distance object motion. 

Figure 5 represents the time to impact mean value at every 
image of the sequence of figure 2. Dotted points are these 
time to impact values, while straight lines represents the real 
time to impact of the two approaching objects of the scene. 

 
Fig. 5. Calculated time to impact for the whole image 

It is easy to see in this figure that the closest object 
theoretical time to impacts (left straight line) do not match 
at all the calculated empirical values, while the matching of 
the second object is almost total at the end, just when the 
other object disappeared from the scene. 

The lack of matching of both objects while both are present 
in the scene is quite logical: the experimental values that we 
see in the figure correspond to the mean value between the 
time to impact of both objects, that is roughly the points 
between the two straight lines. 

Just when the closest object disappears from the scene (after 
first impact) the matching between the calculated and 
theoretical times to impact is complete. This is because 
there is only one moving object. A better analysis consists 
of detecting the two mean values of the measured velocities. 

First 50 calculated times to impacts are not correct since the 
algorithm needs these previous images to stabilize and to 

have enough points for statistical accurate calculations. 
Once the “pipeline” has started all subsequent points are 
correctly calculated as seen in the figure. 

6. Conclusions 
In this paper we have presented the feature extraction 
method as a high speed technique for movement analysis 
using log-polar images. Current processing speed is around 
8 images per second in a Pentium III, 800 MHz personal 
computer. Higher image rates can be easily reached with 
more up to date computers. Also the algorithm can be 
further refined for higher speed computation. 

Feature extraction performs well for object tracking but it 
needs additional statistical treatment for time to impact 
computation. The high image rates employed allows us to 
have large amounts of data to obtain statistical sound values 
for the time to impact and other dynamic parameters 
interesting for motion analysis. 
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