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Abstract

Time to impactcomputatioris oneof theapplicationsof theimageopticalflow. It is usefulin vehiclecrashdetection
or robotic havigation. A high-speedmageacquisitionandcomputatiorrateis necessaryn mostof theseapplications.
Themainproblemof time to impactcomputatiorfrom opticalflow is theaccurag; accurateesultsusuallyneedcomplec
andslow computationshot affordablefor the fasttime reactionof a vehicle or robot. Using log-polarimagesreduces
the amountof datato be processedhus increasingspeedand accurag of results. Most optical flow techniquesare
inadequat¢o obtainhigh ratetime to impactmeasurementsjncethey rely on complex staticcalculationson few images
of thesequenceln our approactthetime to impactis calculatedusingsimplebut fastalgorithmsover a high amountof
imagego have accurataesults.

1 Introduction

It is possibleto calculatea vehicletime to crashusingthe time to impactalgorithm. This algorithmusesasinput the
imagesequencef thevehiclefront view. Thetime to impactalgorithmgenerates mapof time to contactfor every pixel
of every imageof the sequenceThis mapis usefulto detectobjects,collision hazardspbstacleavoidance etc. It also
maybe employedin 3D sceneaeconstruction.

The simplesttime to impactalgorithmjust takesfew pixelsandat leasttwo imagesto calculatespatialandtemporal
derivatives. This simplealgorithmcanbe computedat very high speed thoughprecisionis not very high. This lack of
precisioncanbereducedncreasingheimageacquisitionspeed.

With normalCartesiarimageshigh-speedmageacquisitionproducesamountsof datato be processeéh constrained
time intervals, requiring high performancecomputingsystems. Thesesystemsare rarein autonomous/ehicleswhere
space weightand power consumptionare limited. Theremustbe a way to acceleratehe time to impactcomputation
without reducingtheimageacquisitionspeedandquality [1].

One of the ways of reducingimagedatais by the useof foveatedimages,wherethe interestingpart of the image
(usually the center)hasmore resolutionthan otherlessinterestingareas(periphery). Onefoveatedapproachwith in-
terestingmathematicaproperties,s the log-polarmapping. This log-polarpixel distribution resembleghe humaneye
wherephotoreceptorareconcentrate@t theretinacenteror fovea,while still thereis enoughresolutionatthe periphery

Thelog-polarmappingalsohasinterestingnathematicagpropertiespeciallysuitedfor thetimeto impactcomputation
problem. Sincethe vehiclemovementon a road usuallyfollows the cameraoptical axis, asin our casestudy the optical
flow computationin log-polarcoordinatesimplifiesa lot, sinceonly the radial componenof the optical flow mustbe
computed.The logarithmicpart of the mappingis alsousefulbecausét simplifiesthe expressiorof the time to impact
from opticalflow, sincetime to impactin log-polarcoordinatesioesnot dependntheradius.

2 Log-polar mapping

The log-polar mappingis one of the possibilitiesof having a spacevariantimage acquisitionsystem[2]. The focal
planeof this camerahastwo areaswith analogousramesasthe humaneye: The retinais the outer partand occupies
mostof the sensorarea,in this part the distanceof pixelsto the sensorcenterincreasesxponentiallythus decreasing
pixel resolutiontowardthe periphery The foveais the smallcentralpartwith the highestresolution;it follows the same
polar pixel distribution though pixel distanceto the centerincreasedinearly insteadof exponentially This log-polar
transformatiorcanbeshawn in figure 1 wherethe circle representthefocal or retinalplane,andthe Cartesiarrepresents
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thecomputatioror corticalplane. Thecomputatiorplaneis thetransformatiorof thefocal planeto thecomputememory;
this computatiorplaneis whatthe computerseesf the ervironment.

Theuseof thiskind of log-polarimageseducegsheamountof datato be processedllowing higherimageprocessing
rates. Selectve datareductionis one of the mostinterestingpropertiesof this mapping,but its specialpolar structure
hasalsointerestingmathematicapropertiesasthe rotationinvariance. Also the exponentialgrow of pixel radiushave
interestingmathematicapropertieghatsimplifiessomecalculationsspeciallythe opticalflow andtime to impact[3].

An approachingobjectfollowing the optical axis of the retinal sensomwill experimentan apparentscalingand its
progresswill beviewedasanexpansionmotion. Consequentlyits movementcanberepresentetly a radial optical flow
from the centerof the sensottowardsits edges.Calculationsof sucha movementaresimplified by meansof a log-polar
representationT hefollowing equatiorshaws thetransformatiorfrom Cartesiarto log-polarcoordinates:
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Scalingsasaresultof approachingbjectshecomesimpletranslationsasshown in figure 1, wherearing goingto the
camerahasbeenrepresented.
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Figurel: Approachingobjectin alog-polarmapping.

The simplestway of working with this kind of imagesis to perform a soft corversionfrom Cartesian(standard
camerasjo Log-polar This corversionconsumeprocessingime thoughit canbe performedat very high speed.Other
approachesonsistof directly useof alog-polarcamerahatincludealog-polarsensoif4]. In thislastcaseis whenmore
speedandhigherresolutioncanbeachieved.

3 Timetoimpact computation in log-polar coordinates
It is possibleto establisha relationshipbetweerthe speedf anapproachingbjectandits apparensensotradial speed,

sinceobjectsapproachingo a camergproducea radial optical flow in theimageplane[5]. Let ussuppose P pointthat
is comingto the objectve of the sensoiin adirectionparallelto its optical axis, with speed¥ (t) asshovn in figure2.
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Figure2: Objectapproachinghe camera.

Being f theobjective focal, R thedistancerom P to the opticalaxis (andthereforeconstant) F'(t) thedistancefrom
the projectionpoint of P onthe opticalaxisto the objective focus,andlastly, () thedistancefrom the opticalaxisto P,
theimageof P onthe sensorthenthefollowing simplerelationshipis accomplished:
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It is alsostraightforvardto concludethatV (¢) (radialspeedf P’) is relatedto W (t) (P objectspeed)y:
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Combiningthesetwo equationsijt is possibleto calculatethe timeto impactr; it is to say the time the objectwill
investto collide with the focusof the system:
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Thus,thetime to impactcanbe expressedstherelationbetweerthedistanceof P’ to the centerof thesensoiandthe
radial componenbf the speedn theimageplane. As a consequencet is possibleto traceanimpacttime map,simply
dividing theradioof eachimagepointbetweertheopticalflow in thatpoint.

Whentheseequationsare translatedo the log-polar plane,equation(4) becomesven simpler sincethe term r(¢)
disappeargcancelledby the coordinatechangen V (t)).

TheV (t) magnitudds the optical flow andthereareseveralmethoddor its computatior[6]. In Cartesiarcoordinates
it becomesa difficult task sincethe speedV (t) hastwo components/, andV,,. In log-polarcoordinatest alsohas
two componentgVg,V,,), but asfar aswe are just focusingthe problemof approachingbjects,the polar optical flow
componenV,, is alwayscero.Having justonecomponento calculatesimplifiesthe problemsincethe Horn equation7]
can be directly employed to calculatethe optical flow andits inverse,that gives the time to impactas shavn in the
following equation:
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whereB is aconstanthatdependsn the sensoigeometry I is theimageintensities(image),g—g is theimagederivative

alongthe ¢ axis (spatialderivative) and% is theimagederivative with respecto the time (time derivative). Thesetwo

derivativesarethe only calculationgo be madeon theimage,andthey areassimpleassubtractionsTheuseof log-polar
coordinatesandits applicationto the specialproblemtreatedhere,allow this greatsimplification respectto the same
problemsolvedin Cartesiarcoordinates.

4 Timeto Impact practical implementation

The formula for the time to impactcomputationis simpleasit hasbeenshown in the last section. Neverthelesst is
impracticalto directlyimplementequation(5) for obtainingaccuratdime to impactfrom realmoving images.Thereason
is thatmostof the mainworking constraint®f thealgorithmarenot accomplished.

Therearetwo conditionsthatanimagesequencenustfollow for thetime to impactalgorithmto properlywork. First,
thetwo dimensionafunction,thatdescribesheimagegrey level, mustbe continuousanddifferentiableat any realpoint.
Secondthegrey level evolution asa function of time mustbe alsocontinuousanddifferentiable Sinceimageacquisition
is clearlyadiscretetask,thegrey level functionis not continuousor differentiable neitherwith respecto time nor space.

The solutionusuallyadopteds to supposehatthe imagegrey level functionis continuousn time andspace.This
assumptions of coursefalseandit is the mainreasorfor theinaccurag obtainedby thesealgorithms.Despitetheerror,
this approachs still usefulandmaybeemployedin mostimageprocessinglgorithms thoughit is necessaryo perform
someprevious processindor corvertingthe discretegrey level functionin a continuousunctionto accomplishwith the
algorithmrequirements.

4.1 Derivative constancy and spatial-temporal smoothing

The mostcommonmethodfor makinganimagefunctiondifferentiableis probablyto performanimagesmoothing.This
methodis especiallyinterestingfor the time to impact,or opticalflow, computation.Thereasoris thatthe algorithmcan
be appliedonly on thosepartswherethereis somegrey level gradient. Objectsusuallydo not have ary gradientin real
scenessincemostobjectshave the samecolour or reflectiity. Thelargergradientsareusuallypresentat objectborders
wherethereis asharpdiscontinuity Preciselyin thesepoints,wherethe gradientis large enough|s wherethealgorithm
conditionsarenot metdueto sharpnessf thegrey level function. Performinga smoothingof thesepointscorvertsthese
sharpchangesn a smoothgradientvery suitablefor differential computations. Smoothingis thereforenecessaryor
differentialmethodgo work.

A simple spatialsmoothingcan be obtainedapplying a simple 3x3 weighedmask. This simple maskgives good
resultsandit is not muchcomputationablemanding.Along with this spatialsmoothingit is alsointerestingto perform



atemporalsmoothingwith the samegoal: to have the grey levelsasa continuoudifferentiablefunction of time. In this
casewe canconsidetthatthegrey level functionhastreecoordinatesandthe maskshouldbeappliedto atreedimensional
cubeformedby the 3x3 planesof the threeimages. Thus,in the caseof a spatial-temporasmoothingat leasta 3x3x3
convolution maskshouldbe appliedto every pointin every imageof the sequencelncluding the temporalsmoothing
increaseshreetimesthe calculusto be performedwhile the obtainedorecisionincreasings not sohigh.

Smoothingmalkesfunctionsmoredifferentiableand alsoremoves someimagenoise,but it is not enoughto obtain
goodtime to impactcalculations.Other problemthat arisesin real sceness the grey level gradientconstang. For the
algorithmto work it is necessaryhatthe grey level gradientor slopeis constanfrom oneimageto the next; only in those
partsof theimagewherethe spatialgradientis constantthe calculatedime to impactwill bereliable. For this reasorit
is interestingto have the grey level functiondifferentiableandalsoto have a constangradientpresenin relatively large
areasof theimage.Smoothinghelpson having constangradienton local areasof theimage.

4.2 Taking advantage of high imagerate

Most imageacquisitionsystemausuallyyield up to 25 imagesper second.This high rateis often morethanenoughfor
movementdetectionandreaction.In fact, it is very difficult to extractmovementfrom imageshatarevery closein time.
This is oneof the reasonavhy mary timesonly few imagesper secondarereally employed for image processingand
movementanalysis.Also, thehighamountof dataproducedoy normalCartesianmagesmnakesit difficult to processuch
ahighimagerate.

Usinglog-polarimagesreduceghe amountof datato be processeallowing processingf 25 imagesper secondor
evenmore.Theproblemattheseratesis thatthedifferencegrom oneimageto the next is very smallandit is not possible
to extractany movementinformation;only in fastmovementgherewill bea significantdifferenceamongimages.Thus,
if we needimagesseparatedn time to extract movement,why usingimagehigh rates? Thereare at leasttwo reasons
for usingimagehigh rates:having moreimagesper secondallows the systemto calculatemoreaccurateesults,andthe
algorithmscanbe adaptedo detectfastandslow movementsatthe sametime.

As statedbeforeit is necessaryo wait sometime betweentwo imagesto calculatethe time to impact. This time
betweentwo imagesdependsn the movementthatwe wantto measurejf the movementin front of the camerais fast,
thetime amongimagesmustbe short,while if the movements slow this time mustbelarge enoughto detectdifferences
amongimages.

To have atime to impactcalculationrate equalto the imageacquisitionrate, we have calculatedthe time to impact
usingimagesof thesequenc¢hataredistancecenoughin time. Figure3 shavstheimagesequencandtheimagegaken
to calculatethetime to impact.In thisway it is possibleto calculatethetime to impactkeepingthe originalimagerate.

Distance

Image sequence

Time to impact map:

Histogram

Figure3: Algorithm implementatiordiagram.

The sequencef time to impactsobtainedin this way is not very accuratesincejust usingtwo imagesto calculate
the time to impactis not enough. We usesereralimagesto obtaina statisticalmore accurateime to impactmapjust



calculatingthe mediumvalueover severalimages.lt is possibleto do it this way sincetheimagerateis fastesthanthe
movemento beanalysed.

Finally it is interestingo createa histogramof the calculatedime to impactsto detecthe medium,or mostprobable,
valuethatis thetime to impactof the mainobjectin thescene.

The proceduresxplainedheredependsn the speedof the objectto be studied. Experimentsshow that, depending
on the distancebetweerthe two imagesusedto calculatethe time to impact,somemovementsare detectedbetterthan
others. The algorithmworks like a movementband-paséilter, wherethe distancebetweenthe two imagesfor the time
to impactcomputatiormarksthe centerof the band. If movementdall into this bandit will be possibleto detectthem,
otherwisewe needa mechanismo enlagethebandof thealgorithm.

An algorithm hasbeenimplementedo enlage the bandof the time to impactcalculation. It consistsof an accu-
mulative calculationof the time to impactmapfor several differencesetweernthe two imagesemployedfor thetime to
impactcomputationFor example figure 3 shavsthe Distance betweerthetwo imagesemployedfor thetime to impact
computation.In the implementedalgorithmthis distanceis in factthe maximumdistancetaken, sincefirst it startsata
distanceof justoneimage,thentwo, andsoon. Merging all time to impactmappingsobtainedfor every distancegivesa
time to impactmapwherefastandslow movementsareincluded.

Someexperimentsshow thatit is betternot to useevery distanceto calculatethe time to impact;it is betterto use
higherjumps(5-10)for every distance For example,it is betterto calculatethetime to impactmapsat distance®f 1, 6,
11...,thanl, 2, 3...,sinceit givesbetterresultsandtakeslesstime to executefor the sameband-width.

4.3 Other implementation issues

Thetime to impactalgorithmis very sensibleo noiseandotherinaccurag sources.To avoid wronganderroneougime
to impactcalculationst is interestingto discardthoseresultsthatareprobablywrong.

Oneway of discardingprobablyerroneougesultsis to calculatethe statisticalrelative error of thoseresultsfrom
equation(5):
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whereAr, Al andAlI aretheabsoluteerrorsof thetime to impact,spatialderivative andtemporalderivative respecti-
elly. It is possibleto assumehat Al andAI; arearoundonedueto the discretenatureof thesequantities.Therefore fo
keepthetime to impacterrorto the minimumwe shoulddiscardthoseresultswherel, or I; aresmall. We would like to
choosealargevaluefor I andly, but this is usuallynot possibleanddiscardingower valuesmeansalsoto cut detection
of smalltime to impactsthat, by theway, arethe mostdangerous.

Experimentshow thatit is interestingto discardthosespatialderivativesbelowv 10 or 15. Thethresholdfor thetime
derivative doesnot needto be so high, sinceit is locatedat the denominatoof the time to impactexpression.If thetime
derivative is very smallit will yield a high time to impact, but this is not a real problemsinceabnormallyhigh time to
impactsare not critical. For this reasonthe time derivative may have a thresholdassmallas 3 or 4, or evenlower in
situationswherethereis a needof highernumberof time to impactpoints.

Anotherimportantissuewhendetectingreliabledatato calculatethetime to impactis the spatialgradientconstang.
The time to impactworks if the gradientis constantover a local region but alsoamongimages. It is not a goodidea
to calculateandusethe temporalderivative betweenwo imagesif the spatialgradientdiffers at that point betweenthe
images.For thisreasorwe have alsodiscardedhosepointswheretherewerea difference)argerthana certainthreshold,
betweerthe spatialgradientsof the two imagesemployedto calculatethetime derivative.
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5 Experimental results

All issuegresentedt previoussectionhave beenimplementedn a programthatcalculateghetime to impactmapsand
histogramdrom sequencesf log-polarimages.Several experimentshave beencarriedout for sequencetakenatarate
of 10imagespersecond.

A camerahasbeenmountedin a mobile platform having a constantrectilinearmovementapproximatelyalongthe
cameraopticalaxis. The speedbf the vehicleis around5 cm/s. Two experimentsvhereperformed,n thefirst we putan
obstacleat150cm., while in thesecondye left thesameobstacleandputanotheroneatapproximatehhalf thatdistance.
Sincetheimagerateis 10imagespersecondit takesaround300imagesto impactthelastobstacle.

Thefirst experimentresultsareshovn in figure 4. Thereare300imagedfor thetotal sequencethefour imagesshown
in the figure arethe number100, 150, 200 and 250 from left to right. Thefirst row of the figure representshe time to
impacthistograntfor eachelectednomentof the sequenceTheverticalline representtherealtime to impactmeasured
from the camerao the object. The secondow is the original log-polarimage. Thethird row is thetransformatiorof the



Figure4: Firstexperiment:Firstrow (top) representshetime to impacthistogramof eachimage. Secondrow (middle)
representshe log-polarimagestaken by the camera. Third row (bottom)shaws the standard-epresentationf the log-
polarimages.

log-polarimageto the Cartesiarstandardepresentationin theseimageswe canseea diskette attachedo a white box
forming the objectto impact. The white pointsin the Cartesiarimagesshow the placeswhere“reliable” time to impact
hasbeencalculated.

It is possibleto extractsomeconclusiongrom the histogramf figure4. Thefirst histogram(left) correspondso the
momentwherethe objectis still farfrom the cameraThis histogramshowvs akind of gaussiarwith a centerdifferentthan
thereal valueexpectedihis is not very strangesincelargetime to impactsaredifficult to calculate.The gaussiarwidth
for this first histogramis alsolarge indicatinga not very reliable mediumvalue. The secondhistogramshows a better
result,sincethe gaussiamimostprobablevalueis very closeto therealvalue.Finally, in thethird histogramthetop of the
gaussiamerfectlymatchegherealtime to impact.In theforth andlasthistogranthe matchingis alsocompletebeingthe
width of the gaussiarsmall. Theselasttwo histogramsshav thatthe time to impactcalculationis moreaccuratevhen
thecamerds closeto theimpactinstant.lt is worth notingthatat thethird imagetherearestill 100imagesheforeimpact
andatthelastonetherearestill 50imagesto impact.

Thesecondxperimentresultsareshavn in figure5. Thedifferencewith thefirst experiments thatwe addedanextra
obstaclebetweerthefinal obstacleandthe camera.This new obstaclés only visible attheleft of thefirstimageshowvn in
thefigure. This obstacles not presentat the otherimages.Theimagesshavn in the figure aretaken at similar intervals
asin thefirst experiment.

Thefirst histogramshaws thetime to impactfor thefirst object,but it is shiftedbecausef theinfluenceof thesecond
far object. In the secondhistogramthereis alsoa mismatchandnow is the nearobjectwhich changeghe calculated
time to impact;this first objectis notanymorein front of the cameraput thetime to impactemploys pastimagesfor the
algorithmandalsothereis a mediumvalueover a rangeof imagesthis is why the gaussiarcentercomesbeforethereal
time to impact. At the third histogramthe gaussiarcentermatcheghe real value,andat fourth thereis alsoa perfect
matchingthoughthe numberof reliablepointsis not very high.

6 Conclusions

We have presented fastalgorithmfor thetime to impactcomputation.Thealgorithmitself is not new sinceit is basedn
averywell known differentialmethod thoughourimplementatiorpresenspecificcharacteristicthatmake it interesting
for high-speedime to impactcomputation.Oneof theseimplementatiorissuess the useof differentspacedmageof
the sequencéo obtainabettertime to impactresult,sincedependingon thetime differenceamongimagesthe algorithm



Figure5: Secondexperiment: Two obstaclesareshovn atthefirstimage(left).

actslike a filter wheresomespeedsare discarded;having differentmeasuredor differenttime intervals and meming
them togetherproducemore reliable resultsat differentspeeds. We also have employed log-polarimagesto achieve
real-timeconstraintsandalgorithmsimplifications. Imagesmoothinghasshowvn alsoto be of specialimportancewhen
implementingdifferentialalgorithms. In our case we have noticedbetterresultswhenthis smoothingis performedin
threedimensionstwo for the spaceandonefor thetime.
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