
Change-Driven Image Processing Architecture with Adaptive Threshold for
Optical-Flow Computation

Julio C. Sosa, Rocío Gómez-Fabela, José A. Boluda and Fernando Pardo
Departamento de Informática, Escuela Técnica Superior de Ingeniería

 Universidad de Valencia
 Av. Vicente Andres Estelles s/n, 46.100 Burjassot, Valencia, Spain

 email: [jucesosa, rogodefa]@alumni.uv.es, [Jose.A.Boluda, Fernando.Pardo]@uv.es

Abstract

Optical flow computation has been extensively used
for object motion estimation in image sequences.
However, the results obtained by most optical flow
techniques are as accurate as computationally
intensive due to the large amount of data involved. A
new strategy for image sequence processing has been
developed; pixels of the image sequence that
significantly change fire the execution of the
operations related to the image processing algorithm.
The data reduction achieved with this strategy allows a
significant optical flow computation speed-up.
Furthermore, FPGAs allow the implementation of a
custom data-flow architecture specially suited for this
strategy. The foundations of the change-driven image
processing are presented, as well as the hardware
custom implementation in an EP20K1000C FPGA
showing the achieved performance.

1. Introduction

Apparent object movement estimation from a
sequence of images is a fundamental task in the field
of computer vision. However, motion estimation is a
high processing power demanding application that may
become a critical bottleneck when real-time constrains
are required.

The optical-flow computation consists on the
estimation of the apparent 2D movement field in the
image sequence. In this way, each pixel has an
associated velocity vector. This technique can be
combined with several segmentation techniques in
order to improve its accuracy or implement object
tracking. There are many strategies for optical-flow
computation in the literature [1]. Among these
methods, the gradient-based and the correlation-based
approaches are the two most widely used techniques.

Most of the recent advances in optical-flow
computation have focused their improvements on
achieving a high accuracy. Examples of these research
fields can be found in [2],[3],[4],[5]. Moreover, there
are few works that pay attention to the computation
speed aspects, like the achievement of a faster speed
with real time constrains. Additionally, novel
theoretical analysis of motion and optical flow
estimation encourage the use of custom electronic
devices [6].

The classical approach for image sequence analysis
usually involves full image processing. In the optical
flow computation the spatial and temporal derivatives
are calculated for all pixels on all images, despite the
fact that images could have suffered minor changes
from one frame to the next.

It is possible to reduce the processing time realizing
that images usually change little from frame to frame,
especially if the acquisition time is short.

This paper presents a new architecture for speeding-
up the optical-flow computation. This method is based
on pixel change instead of full image processing and it
shows a good speed-up. The system has been
developed for being implemented on an Altera
development board, which includes an EP20K100
FPGA and 32 Mbytes of SDRAM. The Overall system
was designed in VHDL and it has been simulated with
Modelsim.

2. Theoretic Analisys

In this section, the original problem for optical-flow
computation according to Horn & Schunck’s [7]
algorithm is reviewed, and the novel proposed
technique for optical flow computation is introduced.

2.1 Optical Flow Computation

The brightness of a pixel at point (x,y) in an image
plane at time t is denoted by E(x,y,t). Let E(x,y,t) and
E(x,y,t+1) be two successive images of a video
sequence.

The basic assumptions underlying all motion
estimation methods are: the sampled pixel brightness
remains constant in time and all apparent variations of
the brightness, throughout a video sequence, are due to
spatial displacement of the pixels, which again are
caused by motion of objects in the video sequence. The
brightness conservation assumption is described as:

(1)

This equation is called the optical flow constraint,
where Ex, Ey and Et are the bright changes of a point in
the image for horizontal, vertical and temporal
directions. The unknowns u and v, denote the
horizontal and the vertical component of the motion
vector at each pixel position.

Equation (1) has two unknowns (u,v), therefore a
second constraint must be proposed in order to solve
this ill-posed problem. The smoothness constrain can
be formulated for minimizing the sum of squares of the
Laplacian of the motion vector field u, v.

(2a)

(2b)

Where the average of the values are defined as:

(3a)

(3b)

Now there are two equations for each point in the
image.

(4a)

(4b)

where u) , v) are the Laplacian of velocities u, v and α
is an adjust parameter. These equations have an
iterative form because u and v are function of u) and v) .

2.2. Implementation Considerations

It is necessary to obtain the spatial and temporal

gradient values for computing optical-flow. To do this,
at least two consecutive images of the sequence are
required. In the other hand, equations (4a) and (4b)
show an iterative dependence, thus the result depends
of the previous calculation. The iterative process is
repeated a fixed number of times. When the iterative
process is concluded, the result is presented to the
system output. Afterward, a new pair of images is
processed.

A custom architecture of this type was proposed by
Arribas & Monasterio [8]. They processed 50x50
pixel, images at 19 fps using only three iteration cycles
per each pair of images. Initially, the default result is
assumed as a zero value for all optic flow field vectors.

In a recent work, Martin et al. [6] show a new
optical flow computing technique. In this work, the
iterations are made between a group of successive
images in an image sequence, not only between a pair
of two consecutive images. In other words, a single
iteration per image pair is performed and the results are
used as input for a second iteration, but now with a
new pair of images. This idea is based on the
assumption that changes between two consecutive
images are negligible and the obtained result are useful
for an iterative process. Martin et al. present results
after processing 64 images, but with only 1 iteration
per each pair of images.

This paper uses the same principles of the two
works described before in [6] and [8]: image changes
between two consecutive images are minor and the
image intensity changes appear due to a local pixel
movement. In this way, if there is not any intensity
change in any pixel of a consecutive images pair then
there is no movement, so these images will not be
processed. This is the reason that justifies the existence
in this architecture of an element that locates only the
pixels that changed. Additionally, a memory must be
used for storing the pixels that changed between two
consecutives images. In this way, the iteration cycles
are made with the memorized pixels and thus full
image processing is avoided. The temporal redundancy
at the images sequence is reduced using this strategy.

,0=++= tyxof EvEuEE

,2

2

2

2
2

y
u

x
uu

∂
∂

+
∂
∂

=∇

,2

2

2

2
2

y
v

x
vv

∂
∂

+
∂
∂

=∇

{ },
12
1

,1,1,1,1,1,1,1,1 kjikjikjikji uuuu −++++−−− ++++

{ }kjikjikjikjikji uuuuu ,1,,,1,1,,,1,, 6
1ˆ −++− +++=

{ },
12
1

,1,1,1,1,1,1,1,1 kjikjikjikji vvvv −++++−−− ++++

{ }kjikjikjikjikji vvvvv ,1,,,1,1,,,1,, 6
1ˆ −++− +++=

,ˆ
)(

)ˆˆ(
ˆ

222 Den
NumEu

EE

EvEuEE
uu x

yx

tyxx −=
++

++
−=

α

,ˆ
)(

)ˆˆ(
ˆ

222 Den
NumEv

EE

EvEuEE
vv y

yx

tyxy −=
++

++
−=

α

This condition can be expressed as follows: when
the pixel intensity level difference between two
consecutive images is less than a threshold, then this
pixel will not be processed. This restriction can be
written with the equation:

 1 mag > th
ch ={ 0 mag≤ th, (5)

where mag is the gray level difference, th is the
threshold, an integer value always small. Detected
change ch will be 1 if there is a change in the pixel or 0
if not. With small values for the threshold many pixels
will be detected as moving pixels and there will not be
a greater time reduction. In the other hand, with upper
values for the threshold a major speed-up will be
achieved, but with a loss of accuracy.

2.3. Change-Driven Image Processing

The change-driven policy has been applied before

to another image processing algorithm [9]. The
change-driven image processing theoretical speed-up
was estimated by software before the hardware
implementation. The formal optical flow and change-
driven optical flow algorithms have been implemented
in C++.

The algorithm is significantly different, and
subsequently, the computing resources needed (and
therefore the hardware required) are reduced when
change-driven processing is applied. A LUT is
necessary to compare two consecutive images to detect
which pixels have changed on the images. Only pixels
that have changed (above threshold) fire the
corresponding processing instructions.

The number of clock cycles needed to implement
the original optical flow algorithm can be expressed as:

cycles = 3 (M×N) + 2K (M×N), (6)
where M×N is the image size and K is the number of
iterations. The optical flow modified algorithm
computation cost of is represented as:

cycles =(M×N)+ 3 (M×N) ρ + 2Kρ (M×N) , (6a)
where ρ is defined by:

1- No. pixels that not change ρ = (M×N)
(7)

There will be few pixels that change if the threshold
is high. The experiments performed, with constant
brightness, recommend a threshold less than five for
obtaining useful results in the optical flow
computation. Moreover, if the changes between two
consecutive images are small (that’s true especially if
the acquisition time is short and there are not many

moving objects) there will be a very small percentage
of pixels to be processed.

3. Threshold Selection for change-detection

The threshold selection is a very important step.

The focus in this section is to determine what threshold
value is the best. In [10] it has been presented an
example (a reduced version) of the change-driven
image processing policy applied to the optical flow
computation. It was shown that the system
effectiveness depends on the percentage of static pixels
whose variation intensity is below the threshold. In
real scenes captured by camera, there will be inevitable
noise that randomly can change pixel intensity values.
As a result, this noise will give a number of false
positives that will degrade system accuracy and
performance. However, adapting the threshold
dynamically significantly reduces the problem.

It can be concluded that the threshold is a critical
value in change-driven processing algorithms. Too low
value may include spurious changes, while a too high
value will erase significant scene changes. There are
many thresholding algorithms published in the
literature [11], [12]. Nevertheless, selection of an
appropriate algorithm is not an easy problem since
each algorithm makes different assumptions about the
image content or environment dependencies.

Our approach takes the gray level average of a pixel
set. The pixel set must be distributed uniformly in each
image. The gray level average is computed by:

(8)

where m×n denote the grid dimension, i and j are the
pixel coordinates (they are not consecutive pixels, i,j
=1k, 2k, … k≥1, if k=1 all the image is averaged).
Therefore, the difference between two consecutive
averages (of two consecutive images), will indicate the
appropriate threshold.

The principle is simple. If there are not changes
between two consecutive images, that is, the brightness
is constant and there is not movement, then the gray
level average must be the same for each image.

However, if there is not movement but there is
illumination or brightness changes, as it is shown at
Fig. 1, then the gray average is different between two
consecutive images. This difference will determine the
threshold value utilized to implement the change-
driven image processing. It is necessary the
experimentation with different image sequences in
order to determine the total amount of pixels needed.

,),(∑∑ ×
=

m

i

n

j nm
jipa)

a)

b)

Figure 1. There is illumination variation but not
movement.

4. Architecture

The iterative form for optical flow computation can
be implemented by software on a general purpose
microprocessor. However, in order to process image
sequences in real time it is interesting to use
Programmable Devices, ASIC, analog integrated
circuit VLSI [13], cluster of processors [14] or special
processors [15], though these last solutions are not
practical or they are very expensive. FPGAs have been
chosen to allow a cheaper an easy prototype
development.

The system design was divided into three parts.
First the processing modules included into FPGA were
developed in VHDL. Afterwards the system was
simulated including the development board SDRAM
modules [16]. Finally, a full simulation was performed
including the pci_mt32 MegaCore function. The
Quartus II software and ModelSim-Altera tools were
used.

The FPGA architecture has been divided into four
modules: gradient/LUT module, velocities module,
Laplacian module and iteration-fifo control module.

The optical flow algorithm requires a large FIFO
memory that can be implemented in the FPGA. The
EP20K1000C has up to 327.680 RAM bits. A block

schema of the proposed hardware architecture is
shown in Fig. 2.

It must be noted that the calculations made with the
hardware modules are implemented using integer
arithmetic, since it requires less resources than a
floating point approach. The divisions have been
normalized to the power of two and implemented as a
right shift. The idea is to optimize the use of resources
and to increase the speed of the system.

W/R

initial

 64 bits

 LU LV

 Ex Ey Et

 U V

 LU LV

 Ex Ey Et

Image (t+1)Image (t)

 Ch Ex Ey Et

64 bits 64 bits 64 bits

FIF
O
R
O
W

FIF
OR
O
W
n

LUT/Gradient module to eight pixels process

FIF
O
R
O
W

FIF
O
R
O
W

Iteration

FIFO

Control

Module

L
U
T

FIFO
32 words, 216 bits of

width

Control logic

FIFO
256 words, 45 bits of width

Velocities module

FIFO
256 words, 18 bits of width

U
n
+
2

U
n
+
1

V
n
+
1

V
n
+
2

U
n

V
n

Control logic (k iterations)

Laplacian module

L
U
T

L
U
T LU LV

FIFO memory

Control logic

M
A
I
N

L
U
T

SDRAM memory, two consecutive images
and Ex, Ey, Et, LU, LV, and velocities

Selection
Threshold

(Th)

Figure 2. Architecture for optical-flow computation
(u,v) using the iterative equation set and a LUT.

4.1. Threshold selection Module

The threshold selection module computes the
average gray level of a pixel set. The pixel amount is a
power of two. Thus it is not necessary implementing a
division, which is a computational expensive
operation. The pixel set was fixed as a grid of 8 × 8
pixels distributed uniformly along the image. That
allocation gives a total of 64 pixels per image. This
module has a very simple architecture. One fast-carry
adder and one right shifter have been employed.

4.2. LUT/Gradient Module

The gradient module computes the horizontal,
vertical and temporal image gradients. Several pixels
from current and previous images are necessary. Only
four rows, two of each image, are required initially.
Those rows are kept in FIFO memories. Subsequently,
a new row of each image must be introduced (I1 row
n+1 and I2 row n+1) for finishing all image rows.

Eight pixels are processed in parallel at the
LUT/Gradient module being the LUT computed for
the next stage. The operations are implemented with
additions, subtractions and two right shifters for the
division by 4. The result, expressed in 2’s complement,
is obtained in one clock cycle.

Gradient module outputs are stored in the FIFO
memories. Only those pixels that have suffered a
change in its gray value will be taken into account.
These pixels will be stored at the SDRAM memory
until they are processed at the velocities module.

4.3. Velocities Module

It is necessary to divide the process into stages for
implementing the equations, (4a) and (4b) in a
pipeline. That operation is broken into five smaller
operations. The latency in this module is 8 clock
cycles, at 33 Mhz.

A VHDL standard multiplying function has been
used with minor modification for calculating these
terms. First Num and Den are calculated. In addition,
four temporal registers for Ex, Ey, u) and v) terms are
necessary. Although the Num/Den term is common for
both equations, it is necessary to note that all
calculations are made with integer arithmetic. Initially
the products between (Num · Ex) and (Num · Ey) are
implemented. Three temporal registers for Den, u) and
v) terms are again necessary. The divisions with Den
as divider are performed when the products are
obtained. Finally with a last subtraction the process is
accomplished and the velocities u and v are obtained.

A VHDL standard multiplying function has been
used with minor modification for calculating these
terms. First Num and Den are calculated. In addition,
four temporal registers for Ex, Ey, u) and v) terms are
necessary. Although the Num/Den term is common for
both equations, it is necessary note that all calculations
are made with integer arithmetic. Initially the products
between (Num ∗ Ex) and (Num ∗ Ey) are implemented.
Three temporal registers for Den, u) and v) terms are
again necessaries. The divisions with Den as divider
are performed when the products are obtained. Finally
with a last subtraction the process is accomplished and
the velocities u and v are obtained.

4.4. Laplacian Module

Once all LUT pixels have been processed, but with

the number of iterations no completed, a feedback loop
of the Laplacian convolution to the velocity module
result is applied. The convolution smoothes the optical
flow computed. Nine previous pixels of three
neighbour rows are needed for performing this action.
In fact equations (3a) and (3b) are implemented at this
module. There are two divisions in these equations that
are not powers of two (6 and 12). In order to simplify
the logic required and to speed-up the computation
time, the divisions are implemented in two stages. First
an integer division by 3 is implemented an afterwards a
right shifting (of one or two bits) is performed.
Outputs from the Laplacian module are stored in a
FIFO memory and afterwards in SDRAM memory.

This process is repeated a fixed number of times.
When the iterative process concludes, the result is
presented at the system output.

4.5. Iteration-FIFO Control Module

This module activates the memory input sequence

and regulates the number of iteration cycles.
Additionally, it addresses the pixel to process and the
place where it is stored. It is necessary to take care of
two different clocks, one for write/read to/from the
SDRAM memory at 100 Mhz, and the other at 33 Mhz
used for the modules.

5. Results

Several tests have been performed for validating the
design. Different tools were used depending on the
part of the implemented system being considered.

First the processing modules included into FPGA
were tested on Quartus II software. Afterwards the
system was simulated including the SDRAM modules

Figure 3. System simulation on ModelSim-Altera.

and the pci_mt32 MegaCore function. In this stage
synthetic images were used as well as real image
sequences.

5.1. Modules and Overall System Simulation

Several system module simulations are presented at

this section. Specifically the timing analysis of the
velocities module and Laplacian module. Quartus II
has been used and the EP20K1000CF672C7 has been
selected.

A latency of 240 ns between data input Ex, Ey, Et,
LU, LV, and the result output U and V is shown. It is
necessary to remark that the output U and V must be
scaled to the final velocities by a constant factor,
power of two.

The LU and LV require a register for a pipeline
implementation. Those elements are necessary in the
last stage of the velocities module. The values were
stored on LU8 and LV8 for the final process.

Quartus II software can not simulate the operations
of a system which includes external devices, such as,
SDRAM memory. Therefore ModelSim-Altera has
been used to test all the system. The simulation has
been performed for verifying that the circuit works
correctly as shown in Fig. 3.

It is necessary to create a top-level testbench file
that instantiates the PCI testbench elements and the IP
functional simulation model of the PCI MegaCore
functions, connecting all the signals.

 The master transactor simulates the master
behavior on the PCI bus. It serves as an initiator of PCI
transactions. The master transactor has three sections:
procedures, initialization and user commands. The bus
monitor displays PCI transactions and information
messages in the simulator’s console window when an
event occurs on the PCI bus. The arbiter simulates the

PCI bus arbiter. The pull_up simulates the PCI signals
pull up functionality, such as the AD, cben, frame, and
other signals. The clock_gen generates the PCI clock
for the testbench. The pci_top module is a MegaCore
function that complies with the requirements specified
in the PCI SIG. The top_o_flow is the module that
includes all the system to optical flow computation.
The sdram_model is a simulation model of the
SDRAM MT48LC4M16A2TG-7E.

5.2. Result Validation

At this section the optical flow computation

performed by the hardware system is compared to a
floating-point software implementation. Additionally,
a study was made for analyzing the accuracy of the
model proposed with respect to the original Horn &
Schunck model (without the change-driven policy)
always using 10 iterations.

The algorithm and images sequences are available
from (ftp://ftp.csd.uwo.ca/pub/v3ision/) and from
http://www.cs.otago.ac.nz/research/vision.

The comparison between the floating point and the
integer arithmetic algorithm used in this paper shows
that the same average relative error in both cases is
obtained. As an example, Yosemite sequence has 0,9º
of average relative error and the diverging tree has
1,71º. The worst case found with these image test
benches is the sinusoid sequence that has 9,74º of
average relative error.

Fig. 4 shows the optical flow computation when
there is no movement but there are brightness changes.
Fig. 4a) has a constant threshold (th=2), and Fig. 4b)
has a variable threshold which takes into account
illumination changes. Fig. 5 shows the same
experiment but with critical illumination and
brightness changes conditions.

a)

b)

Figure 5. Optical flow of tapec_data sequence. 5a)
There are movements in the two consecutives

images. 5b) (left to right) Change driven processing
(th=2), Change driven processing th adaptative. (10

iterations).

a)

b)

Figure 4. Optical flow of rubic_data sequence without
movement. a) Change driven processing (th=2), b)

Change driven processing th adaptive. (10 iterations).

a)

b)

Figure 6. Optical flow of rubic_data sequence. a)
Change driven processing (th=1), b) Original

algorithm. (10 iterations).

a)

b)
Figure 7. Optical flow of sphere sequence. a)Change

driven processing (th=1), b)Original algorithm (10
iterations).

Fig. 6 shows that there are few differences between
the obtained result of a change-driven image
processing and the original algorithm processing at the
rubic_data sequence. Moreover, Fig. 7 shows that

change-driven optical flow implementation has some
noise immunity.

The most important result is that the processing
time is dramatically reduced. Fig. 8 shows the speed-
up comparison between the original model (100%
temporal cost) and the proposed model for different

0%
20%
40%
60%
80%

100%

10 20 50 100
Num ber of ite rations

Ti
m

e
 (%

)

Full processing Th=1 Th=2 Th=3 Th=4

Figure 8. Speed up comparison.

number of firing thresholds and iterations. The
sequence used was a rubic_data.

6. Conclusions

The change-driven image processing strategy

presented at this work allows the implementation of a
new architecture for speeding-up the optical-flow
computation. This method is based on pixel change
instead of full image processing and it shows a good
speed-up. It has been tested using classical optical flow
test sequences and full-custom sequences. The average
error is similar to other full-processing
implementations, but this algorithm is faster. The
number of fps that can be processed depends of the
image changes. In this way, it is not possible to predict
a fixed number of images processed. The results
obtained with the optical flow image test bench have
determined that the system is able to process images of
256x256 pixels at 30 fps.

7. Acknowledgments

This work has been supported by the project UV-

AE-20060242 of the University of Valencia. Julio C.
Sosa is a scholarships student COFAA-IPN.

8. References

[1] J. L. Barron, D. J. Fleet, and S. S. Beauchemin,

“Performance of optical flow techniques” International
Journal of Computer Vision, vol. 12 no. 1, pp. 43-77,
1994.

[2] Yeon-Ho Kim, A. M. Martinez, and A.C. Kak, “Robust
motion estimation under varying illumination” Image
and Vision Computing, vol. 23, pp. 365-375, 2005.

[3] C. H. Teng, S. H. Lai, and Y. S. Chen, “Accurate
optical flow computation under non-uniform brightness
varations” Computer Vision and Image Understanding,
vol. 97, 315-346, 2005.

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert,
“High Accuracy Optical Flow Estimation Based on a
Theory for Warping” Proc. 8th European Conference
on Computer Vision, Springer LNCS 3024, vol. 4, pp.
25–36, May. 2004.

[5] S. H. Lim, J. G. Apostolopoulos, and A. E. Gamal,
“Optical Flow Estimation Using Temporally
Oversampled Video” IEEE Transactions on Image
Processing, vol. 14, no. 7, pp. 890–903, July 2005.

[6] J. L. Martin, A. Zuloaga, C. Cuadrado, J. Lazrao, and U.
Bidarte, “Hardware implementation of optical flow
constraint equation using FPGAs” Computer Vision and
Image Understanding, vol. 98, pp. 462-490, 2005.

[7] B. K. P. Horn and B. G. Schunck, “Determining Optical
Flow” Artificial Intelligence, vol. 17, pp. 185–203,
1981.

[8] P. C. Arribas and F. Monasterio, “FPGA
implementation of the Horn&Schunck Optical Flow
Algorithm for Motion detection in real time Images”
Proceeding XIII Design of circuits and integrated
systems conference, pp. 616-621, 1998.

[9] F. Pardo, J.A. Boluda, X. Benavent, J. Domingo, and J.
C. Sosa. “Circle detection and tracking speed-up based
on change-driven image processing”. ICGST
International Conference on Graphics, Vision and
Image Processing. GVIP'05. pp. 131-136. Cairo, Egypt,
December 2005.

[10] Julio C. Sosa, R. Goméz, J. A. Boluda, and F. Pardo,
“FPGA Implementation of a Change-driven Image
Architecture for Optical Flow Computation”, 16th
International Conference on Field Programmable Logic
and Aplications, FPL06. Accepted. To be presented in
august 2006.

[11] Rosin, Paul L., and Ioannidis E., “ Evaluation of global
image thresholding for change detection” Pattern
Recognition Letters. Vol. 24, p.p. 2345-2356, January
2003.

[12] Sezing, M., and Sankur, B., “Survey over image
thresholding techniques and quantitative performance
evaluation” Journal of Electronic Imaging. Vol. 13,
Issue 1, pp. 146-168, Jan. 2004.

[13] A. A. Stocker and R. J. Douglas, “Analog Integrated 2D
Optical Flow Sensor” IEEE, International Symposium
on Circuits Ans System, vol. 3, pp. 9-12, Vancouver
Canada, May. 2004.

[14] A. G. Dopico, M. V. Correia, J. A. Santos, and L. M.
Nunes, “Distributed Computation of Optical Flow”
International Conference on Computational Science,
pp. 380-387, 2004.

[15] M. V. Correia, and A. Campilho, “ A pipelined Real-
Time Optical Flow Algorithm” Analog Integrated
Circuits and Signal Processing, Springer, vol. 46, no. 2,
p.p. 121-138, Junuary 2004.

[16] Micron Technology, Inc., “SDRAM memory simulation
model: MT48LC4M16A2TG-7E”
http://www.micron.com.

