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Abstract 
 

Optical flow computation has been extensively used 
for object motion estimation in image sequences. 
However, the results obtained by most optical flow 
techniques are as accurate as computationally 
intensive due to the large amount of data involved. A 
new strategy for image sequence processing has been 
developed; pixels of the image sequence that 
significantly change fire the execution of the 
operations related to the image processing algorithm. 
The data reduction achieved with this strategy allows a 
significant optical flow computation speed-up. 
Furthermore, FPGAs allow the implementation of a 
custom data-flow architecture specially suited for this 
strategy. The foundations of the change-driven image 
processing are presented, as well as the hardware 
custom implementation in an EP20K1000C FPGA 
showing the achieved performance.  
 
1. Introduction 
 

Apparent object movement estimation from a 
sequence of images is a fundamental task in the field 
of computer vision. However, motion estimation is a 
high processing power demanding application that may 
become a critical bottleneck when real-time constrains 
are required.  

The optical-flow computation consists on the 
estimation of the apparent 2D movement field in the 
image sequence.  In this way, each pixel has an 
associated velocity vector. This technique can be 
combined with several segmentation techniques in 
order to improve its accuracy or implement object 
tracking. There are many strategies for optical-flow 
computation in the literature [1]. Among these 
methods, the gradient-based and the correlation-based 
approaches are the two most widely used techniques. 

Most of the recent advances in optical-flow 
computation have focused their improvements on 
achieving a high accuracy. Examples of these research 
fields can be found in [2],[3],[4],[5]. Moreover, there 
are few works that pay attention to the computation 
speed aspects, like the achievement of a faster speed 
with real time constrains. Additionally, novel 
theoretical analysis of motion and optical flow 
estimation encourage the use of custom electronic 
devices [6]. 

The classical approach for image sequence analysis 
usually involves full image processing. In the optical 
flow computation the spatial and temporal derivatives 
are calculated for all pixels on all images, despite the 
fact that images could have suffered minor changes 
from one frame to the next. 

It is possible to reduce the processing time realizing 
that images usually change little from frame to frame, 
especially if the acquisition time is short. 

This paper presents a new architecture for speeding-
up the optical-flow computation. This method is based 
on pixel change instead of full image processing and it 
shows a good speed-up. The system has been 
developed for being implemented on an Altera 
development board, which includes an EP20K100 
FPGA and 32 Mbytes of SDRAM. The Overall system 
was designed in VHDL and it has been simulated with 
Modelsim. 
 
2. Theoretic Analisys 
 

In this section, the original problem for optical-flow 
computation according to Horn & Schunck’s [7] 
algorithm is reviewed, and the novel proposed 
technique for optical flow computation is introduced. 

 
2.1 Optical Flow Computation 

 



The brightness of a pixel at point (x,y) in an image 
plane at time t is denoted by E(x,y,t). Let E(x,y,t) and 
E(x,y,t+1) be two successive images of a video 
sequence. 

The basic assumptions underlying all motion 
estimation methods are: the sampled pixel brightness 
remains constant in time and all apparent variations of 
the brightness, throughout a video sequence, are due to 
spatial displacement of the pixels, which again are 
caused by motion of objects in the video sequence. The 
brightness conservation assumption is described as: 

(1) 

This equation is called the optical flow constraint, 
where Ex, Ey and Et are the bright changes of a point in 
the image for horizontal, vertical and temporal 
directions. The unknowns u and v, denote the 
horizontal and the vertical component of the motion 
vector at each pixel position. 

Equation (1) has two unknowns (u,v), therefore a 
second constraint must be proposed in order to solve 
this ill-posed problem. The smoothness constrain can 
be formulated for minimizing the sum of squares of the 
Laplacian of the motion vector field u, v. 

(2a) 

(2b) 

Where the average of the values are defined as: 
 

 

(3a) 

 

 

(3b) 

Now there are two equations for each point in the 
image. 

(4a) 

(4b) 

 
where u) , v)  are the Laplacian of velocities u, v and α 
is an adjust parameter. These equations have an 
iterative form because u and v are function of u) and v) . 

 
2.2. Implementation Considerations 

 
It is necessary to obtain the spatial and temporal 

gradient values for computing optical-flow. To do this, 
at least two consecutive images of the sequence are 
required. In the other hand, equations (4a) and (4b) 
show an iterative dependence, thus the result depends 
of the previous calculation. The iterative process is 
repeated a fixed number of times. When the iterative 
process is concluded, the result is presented to the 
system output. Afterward, a new pair of images is 
processed. 

A custom architecture of this type was proposed by 
Arribas & Monasterio [8]. They processed 50x50 
pixel, images at 19 fps using only three iteration cycles 
per each pair of images. Initially, the default result is 
assumed as a zero value for all optic flow field vectors. 

In a recent work, Martin et al. [6] show a new 
optical flow computing technique. In this work, the 
iterations are made between a group of successive 
images in an image sequence, not only between a pair 
of two consecutive images. In other words, a single 
iteration per image pair is performed and the results are 
used as input for a second iteration, but now with a 
new pair of images. This idea is based on the 
assumption that changes between two consecutive 
images are negligible and the obtained result are useful 
for an iterative process. Martin et al. present results 
after processing 64 images, but with only 1 iteration 
per each pair of images. 

This paper uses the same principles of the two 
works described before in [6] and [8]: image changes 
between two consecutive images are minor and the 
image intensity changes appear due to a local pixel 
movement. In this way, if there is not any intensity 
change in any pixel of a consecutive images pair then 
there is no movement, so these images will not be 
processed. This is the reason that justifies the existence 
in this architecture of an element that locates only the 
pixels that changed. Additionally, a memory must be 
used for storing the pixels that changed between two 
consecutives images. In this way, the iteration cycles 
are made with the memorized pixels and thus full 
image processing is avoided. The temporal redundancy 
at the images sequence is reduced using this strategy. 
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This condition can be expressed as follows: when 
the pixel intensity level difference between two 
consecutive images is less than a threshold, then this 
pixel will not be processed. This restriction can be 
written with the equation: 

 1     mag > th 
ch ={ 0     mag≤  th, (5)

where mag is the gray level difference,  th is the 
threshold, an integer value always small. Detected 
change ch will be 1 if there is a change in the pixel or 0 
if not. With small values for the threshold many pixels 
will be detected as moving pixels and there will not be 
a greater time reduction. In the other hand, with upper 
values for the threshold a major speed-up will be 
achieved, but with a loss of accuracy. 

 
2.3. Change-Driven Image Processing 

 
The change-driven policy has been applied before 

to another image processing algorithm [9]. The 
change-driven image processing theoretical speed-up 
was estimated by software before the hardware 
implementation. The formal optical flow and change-
driven optical flow algorithms have been implemented 
in C++. 

The algorithm is significantly different, and 
subsequently, the computing resources needed (and 
therefore the hardware required) are reduced when 
change-driven processing is applied. A LUT is 
necessary to compare two consecutive images to detect 
which pixels have changed on the images. Only pixels 
that have changed (above threshold) fire the 
corresponding processing instructions. 

The number of clock cycles needed to implement 
the original optical flow algorithm can be expressed as: 

cycles =  3 (M×N) + 2K (M×N), (6) 
where M×N is the image size and K is the number of 
iterations. The optical flow modified algorithm 
computation cost of is represented as: 

cycles =(M×N)+ 3 (M×N) ρ + 2Kρ (M×N) , (6a)
where ρ is defined by: 

1- No. pixels that not change ρ  =  (M×N) 
(7)

There will be few pixels that change if the threshold 
is high. The experiments performed, with constant 
brightness, recommend a threshold less than five for 
obtaining useful results in the optical flow 
computation.  Moreover, if the changes between two 
consecutive images are small (that’s true especially if 
the acquisition time is short and there are not many 

moving objects) there will be a very small percentage 
of pixels to be processed. 
 
3. Threshold Selection for change-detection  

 
The threshold selection is a very important step. 

The focus in this section is to determine what threshold 
value is the best. In [10] it has been presented an 
example (a reduced version) of the change-driven 
image processing policy applied to the optical flow 
computation. It was shown that the system 
effectiveness depends on the percentage of static pixels 
whose variation intensity is below the threshold. In 
real scenes captured by camera, there will be inevitable 
noise that randomly can change pixel intensity values. 
As a result, this noise will give a number of false 
positives that will degrade system accuracy and 
performance. However, adapting the threshold 
dynamically significantly reduces the problem. 

It can be concluded that the threshold is a critical 
value in change-driven processing algorithms. Too low 
value may include spurious changes, while a too high 
value will erase significant scene changes. There are 
many thresholding algorithms published in the 
literature [11], [12]. Nevertheless, selection of an 
appropriate algorithm is not an easy problem since 
each algorithm makes different assumptions about the 
image content or environment dependencies. 

Our approach takes the gray level average of a pixel 
set. The pixel set must be distributed uniformly in each 
image. The gray level average is computed by: 

(8) 

where m×n denote the grid dimension, i and j are the 
pixel coordinates (they are not consecutive pixels,  i,j 
=1k, 2k, … k≥1, if k=1 all the image is averaged). 
Therefore, the difference between two consecutive 
averages (of two consecutive images), will indicate the 
appropriate threshold. 

The principle is simple. If there are not changes 
between two consecutive images, that is, the brightness 
is constant and there is not movement, then the gray 
level average must be the same for each image.  

However, if there is not movement but there is 
illumination or brightness changes, as it is shown at 
Fig. 1, then the gray average is different between two 
consecutive images. This difference will determine the 
threshold value utilized to implement the change-
driven image processing.  It is necessary the 
experimentation with different image sequences in 
order to determine the total amount of pixels needed. 

,),(∑∑ ×
=

m

i

n

j nm
jipa)



a)   

b)  

Figure 1. There is illumination variation but not 
movement.

 
4. Architecture 
 

The iterative form for optical flow computation can 
be implemented by software on a general purpose 
microprocessor. However, in order to process image 
sequences in real time it is interesting to use 
Programmable Devices, ASIC, analog integrated 
circuit VLSI [13], cluster of processors [14] or special 
processors [15], though these last solutions are not 
practical or they are very expensive. FPGAs have been 
chosen to allow a cheaper an easy prototype 
development. 

The system design was divided into three parts. 
First the processing modules included into FPGA were 
developed in VHDL. Afterwards the system was 
simulated including the development board SDRAM 
modules [16]. Finally, a full simulation was performed 
including the pci_mt32 MegaCore function. The 
Quartus II software and ModelSim-Altera tools were 
used.  

The FPGA architecture has been divided into four 
modules: gradient/LUT module, velocities module, 
Laplacian module and iteration-fifo control module. 

The optical flow algorithm requires a large FIFO 
memory that can be implemented in the FPGA.  The 
EP20K1000C has up to 327.680 RAM bits. A block 

schema of the proposed hardware architecture is 
shown in Fig. 2. 

It must be noted that the calculations made with the 
hardware modules are implemented using integer 
arithmetic, since it requires less resources than a 
floating point approach. The divisions have been 
normalized to the power of two and implemented as a 
right shift. The idea is to optimize the use of resources 
and to increase the speed of the system.  
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(u,v) using the iterative equation set and a LUT.



4.1. Threshold selection Module 
 

The threshold selection module computes the 
average gray level of a pixel set. The pixel amount is a 
power of two. Thus it is not necessary implementing a 
division, which is a computational expensive 
operation. The pixel set was fixed as a grid of 8 × 8 
pixels distributed uniformly along the image. That 
allocation gives a total of 64 pixels per image. This 
module has a very simple architecture. One fast-carry 
adder and one right shifter have been employed. 

 
4.2. LUT/Gradient Module 
 

The gradient module computes the horizontal, 
vertical and temporal image gradients. Several pixels 
from current and previous images are necessary. Only 
four rows, two of each image, are required initially. 
Those rows are kept in FIFO memories. Subsequently, 
a new row of each image must be introduced (I1 row 
n+1 and I2 row n+1) for finishing all image rows. 

Eight pixels are processed in parallel at the 
LUT/Gradient module being the LUT computed for 
the next stage. The operations are implemented with 
additions, subtractions and two right shifters for the 
division by 4. The result, expressed in 2’s complement, 
is obtained in one clock cycle. 

Gradient module outputs are stored in the FIFO 
memories. Only those pixels that have suffered a 
change in its gray value will be taken into account. 
These pixels will be stored at the SDRAM memory 
until they are processed at the velocities module.  
 
4.3. Velocities Module 
 

It is necessary to divide the process into stages for 
implementing the equations, (4a) and (4b) in a 
pipeline. That operation is broken into five smaller 
operations. The latency in this module is 8 clock 
cycles, at 33 Mhz. 

A VHDL standard multiplying function has been 
used with minor modification for calculating these 
terms. First Num and Den are calculated. In addition, 
four temporal registers for Ex, Ey, u)  and v) terms are 
necessary. Although the Num/Den term is common for 
both equations, it is necessary to note that all 
calculations are made with integer arithmetic. Initially 
the products between (Num · Ex) and (Num · Ey) are 
implemented. Three temporal registers for Den, u)  and 
v)  terms are again necessary. The divisions with Den 
as divider are performed when the products are 
obtained. Finally with a last subtraction the process is 
accomplished and the velocities u and v are obtained.  

A VHDL standard multiplying function has been 
used with minor modification for calculating these 
terms. First Num and Den are calculated. In addition, 
four temporal registers for Ex, Ey, u)  and v) terms are 
necessary. Although the Num/Den term is common for 
both equations, it is necessary note that all calculations 
are made with integer arithmetic. Initially the products 
between (Num ∗ Ex) and (Num ∗ Ey) are implemented. 
Three temporal registers for Den, u)  and v)  terms are 
again necessaries. The divisions with Den as divider 
are performed when the products are obtained. Finally 
with a last subtraction the process is accomplished and 
the velocities u and v are obtained. 
 
4.4. Laplacian Module 

 
Once all LUT pixels have been processed, but with 

the number of iterations no completed, a feedback loop 
of the Laplacian convolution to the velocity module 
result is applied. The convolution smoothes the optical 
flow computed. Nine previous pixels of three 
neighbour rows are needed for performing this action. 
In fact equations (3a) and (3b) are implemented at this 
module. There are two divisions in these equations that 
are not powers of two (6 and 12). In order to simplify 
the logic required and to speed-up the computation 
time, the divisions are implemented in two stages. First 
an integer division by 3 is implemented an afterwards a 
right shifting (of one or two bits) is performed. 
Outputs from the Laplacian module are stored in a 
FIFO memory and afterwards in SDRAM memory. 

This process is repeated a fixed number of times. 
When the iterative process concludes, the result is 
presented at the system output. 
 
4.5. Iteration-FIFO Control Module 

 
This module activates the memory input sequence 

and regulates the number of iteration cycles. 
Additionally, it addresses the pixel to process and the 
place where it is stored. It is necessary to take care of 
two different clocks, one for write/read to/from the 
SDRAM memory at 100 Mhz, and the other at 33 Mhz 
used for the modules. 

 
5. Results 
 

Several tests have been performed for validating the 
design. Different tools were used depending on the 
part of the implemented system being considered. 

First the processing modules included into FPGA 
were tested on Quartus II software. Afterwards the 
system was simulated including the SDRAM modules 



 

Figure 3. System simulation on ModelSim-Altera. 

and the pci_mt32 MegaCore function. In this stage 
synthetic images were used as well as real image 
sequences. 

 
5.1. Modules and Overall System Simulation 

 
Several system module simulations are presented at 

this section. Specifically the timing analysis of the 
velocities module and Laplacian module. Quartus II 
has been used and the EP20K1000CF672C7 has been 
selected. 

A latency of 240 ns between data input Ex, Ey, Et, 
LU, LV, and the result output U and V is shown. It is 
necessary to remark that the output U and V must be 
scaled to the final velocities by a constant factor, 
power of two. 

The LU and LV require a register for a pipeline 
implementation. Those elements are necessary in the 
last stage of the velocities module. The values were 
stored on LU8 and LV8 for the final process. 

Quartus II software can not simulate the operations 
of a system which includes external devices, such as, 
SDRAM memory. Therefore ModelSim-Altera has 
been used to test all the system. The simulation has 
been performed for verifying that the circuit works 
correctly as shown in Fig. 3. 

It is necessary to create a top-level testbench file 
that instantiates the PCI testbench elements and the IP 
functional simulation model of the PCI MegaCore 
functions, connecting all the signals. 

 The master transactor simulates the master 
behavior on the PCI bus. It serves as an initiator of PCI 
transactions. The master transactor has three sections: 
procedures, initialization and user commands. The bus 
monitor displays PCI transactions and information 
messages in the simulator’s console window when an 
event occurs on the PCI bus. The arbiter simulates the 

PCI bus arbiter. The pull_up simulates the PCI signals 
pull up functionality, such as the AD, cben, frame, and 
other signals. The clock_gen generates the PCI clock 
for the testbench. The pci_top module is a MegaCore 
function that complies with the requirements specified 
in the PCI SIG. The top_o_flow is the module that 
includes all the system to optical flow computation. 
The sdram_model is a simulation model of the 
SDRAM MT48LC4M16A2TG-7E. 

 
5.2. Result Validation 

 
At this section the optical flow computation 

performed by the hardware system is compared to a 
floating-point software implementation. Additionally, 
a study was made for analyzing the accuracy of the 
model proposed with respect to the original Horn & 
Schunck model (without the change-driven policy) 
always using 10 iterations. 

The algorithm and images sequences are available 
from (ftp://ftp.csd.uwo.ca/pub/v3ision/) and from 
http://www.cs.otago.ac.nz/research/vision. 

The comparison between the floating point and the 
integer arithmetic algorithm used in this paper shows 
that the same average relative error in both cases is 
obtained. As an example, Yosemite sequence has 0,9º 
of average relative error and the diverging tree has 
1,71º. The worst case found with these image test 
benches is the sinusoid sequence that has 9,74º of 
average relative error. 

Fig. 4 shows the optical flow computation when 
there is no movement but there are brightness changes. 
Fig. 4a) has a constant threshold (th=2), and Fig. 4b) 
has a variable threshold which takes into account 
illumination changes. Fig. 5 shows the same 
experiment but with critical illumination and 
brightness changes conditions.  



a)   

b)   

Figure 5. Optical flow of tapec_data sequence. 5a) 
There are movements in the two consecutives 

images. 5b) (left to right) Change driven processing 
(th=2), Change driven processing th adaptative.  (10 

iterations). 

a)  

b)  

Figure 4. Optical flow of rubic_data sequence without 
movement. a) Change driven processing (th=2), b) 

Change driven processing th adaptive. (10 iterations). 

a)  

b)  

Figure 6. Optical flow of rubic_data sequence. a) 
Change driven processing (th=1), b) Original 

algorithm. (10 iterations). 

a)  

b)  
Figure 7. Optical flow of sphere sequence. a)Change 

driven processing (th=1), b)Original algorithm (10 
iterations). 

Fig. 6 shows that there are few differences between 
the obtained result of a change-driven image 
processing and the original algorithm processing at the 
rubic_data sequence. Moreover, Fig. 7 shows that 

change-driven optical flow implementation has some 
noise immunity.  

The most important result is that the processing 
time is dramatically reduced. Fig. 8 shows the speed-
up comparison between the original model (100% 
temporal cost) and the proposed model for different 
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number of firing thresholds and iterations. The 
sequence used was a rubic_data. 

 
6. Conclusions 

 
The change-driven image processing strategy 

presented at this work allows the implementation of a 
new architecture for speeding-up the optical-flow 
computation. This method is based on pixel change 
instead of full image processing and it shows a good 
speed-up. It has been tested using classical optical flow 
test sequences and full-custom sequences. The average 
error is similar to other full-processing 
implementations, but this algorithm is faster. The 
number of fps that can be processed depends of the 
image changes. In this way, it is not possible to predict 
a fixed number of images processed. The results 
obtained with the optical flow image test bench have 
determined that the system is able to process images of 
256x256 pixels at 30 fps. 
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