
Circle detection and tracking speed-up based on change-driven image
processing

Fernando Pardo, Jose A. Boluda, Julio C. Sosa
Departamento de Informática, Universidad de Valencia

Avda. Vicente Andres Estelles s/n, 46.100 Burjassot, Valencia, Spain
[Fernando.Pardo, Jose.A.Boluda]@uv.es

Xaro Benavent, Juan Domingo
Instituto de Robótica, Universidad de Valencia

Avda. Polígono de la Coma s/n, 46.890 Paterna, Valencia, Spain
[Xaro.Benavent, Juan.Domingo]@uv.es

Abstract
Real-time motion analysis is an image processing task
that requires high processing power due to the large
amount of data involved. An improved strategy for
processing image sequences is presented. This new
approach takes only the pixels of the image sequence
that are signi�cant for the motion estimation algo-
rithm being implemented, reducing the amount of
data to be processed and increasing the algorithm
speed. This approach has been tested using one clas-
sical algorithm for object detection and tracking. The
results show that this method is several times faster
than the classical approach.

Keywords: Change-driven image processing,
Hough transform, object tracking, circle recognition.

1 Introduction
Movement analysis is a challenging image processing
task, due to the large amount of data to be processed
and the real-time requirements to obtain the com-
puted results. One example of image sequence pro-
cessing, among others, is the tracking of one or more
objects in front of a camera. This speci�c task re-
quires high speed detection of the object and calcula-
tion of its position. Object recognition, especially for
simple objects, is a task that can be performed in a
relatively short time of few seconds. This time is good
for many applications, but not for real-time image se-
quence processing, in which the time constraint is in
the order of milliseconds.

Full image processing is usually the classical ap-
proach for general image sequence processing. In the
case of object recognition and tracking, the normal
procedure implies the application of the detection al-

gorithm for each image in the sequence. This classical
approach is enough when the detection algorithm or
the processing hardware is capable of detecting the ob-
ject in few milliseconds. Depending on the complexity
of the object to be tracked and the implemented algo-
rithm, the processing time can last even seconds for
each image in the sequence.

It is possible to reduce the processing time real-
izing that images usually change little from frame to
frame, especially if the acquisition time is short. The
reduction is accomplished executing the instructions
only for the pixels which have changed between two
consecutive images. In classical optical �ow computa-
tion algorithms, for example, the spatial and temporal
derivatives are calculated for all pixels in the image
despite the fact that images could have su�ered no
change at all from one frame to the next.

Paying attention only to those pixels that change
is not new and this same principle has been employed
to design some image sensors with on-plane compres-
sion [2]. These image sensors only deliver the pixels
that change, decreasing the amount of data coming
from the camera. This data reduction obtained with
these sensors has been successfully employed to speed-
up some image processing tasks [4].

Some other sensors, most of them biologically in-
spired, implement a similar strategy but in the space
domain instead of the temporal domain. In those sen-
sors the di�erences among neighbour pixels is com-
puted and in case this di�erence is above a �xed
threshold, the pixel is read out. It also allows the pos-
sibility of asynchronous pixel reading [5], which may
open the possibility of processing reduction, since only
the interesting part of the image, the most relevant,
is processed. Other similar sensors acts like the hu-
man cells: if the cell receives more light, it takes less



time to �re. These sensors �re high illuminated pix-
els more often than those at darkness [3]; from the
image processing point of view the advantage of this
characteristic has to still be proved.

A method for speeding-up classical image sequence
processing algorithms is presented. This method is
based on pixel change instead of full image processing
and it shows a good speed-up. This method do not
require any special hardware or sensor, though a larger
speed-up could be obtained with a speci�c sensor or
processing architecture.

This methodology has been tested using an algo-
rithm for circle tracking using the Hough transform.
The method can work for most video processing al-
gorithms, this circle detection was chosen since it in-
volves many of the operations present in motion de-
tection algorithms, like image di�erentiation, and it
requires operations at di�erent pixel neighbourhoods
from local to global operations. This algorithm is also
di�cult to be implemented at video rates, so any im-
provement in the speed may allow its use in real-time
applications.

2 Change-driven processing
Classical algorithms for image processing consist of
a sequence of tasks to be performed over an im-
age or image sequence. Any algorithm can be pro-
grammed as an instruction sequence. This list of in-
structions makes a program that can be easily im-
plemented in any processor, since they are based on
program counter. This is one of the reasons why little
attention has been focused on the direction of mak-
ing image processing algorithms dependent on data
events instead of on the computer program counter,
which points which instruction is executed next. In a
change-driven processing, or data-driven processing,
or data �ow architecture [1], data changes �re the in-
structions to execute, opening also the possibility of
parallel execution. Data-�ow architectures are better
for change-driven problems, but even with standard
processor architectures, it is still possible to success-
fully use the change-driven principle to speed-up some
image processing tasks.

Image sequence processing is a kind of computa-
tion that greatly bene�ts from the approach of �ring
instructions of an algorithm only when data changes,
since many times, only few pixels change from frame
to frame and usually there is no need to execute any
instruction for those pixels that did not change. Many
classical algorithms usually perform the same calcula-
tion for all the pixels in an image for every image in
the sequence, even if the pixel did not change at all
from one frame to the next. It is possible to save some
calculations if only those pixels that have changed are
taken into account to �re the speci�c instructions.

Classical algorithms must be completely rebuilt to
process only those pixels that change from frame to

frame. The implementation of this methodology for
an image processing algorithm usually requires extra
storage to keep track of the intermediate results of pre-
ceding computing stages. In this kind of processing,
the speed increases as well as the storage needs. Nowa-
days, storage is not a problem for modern computers,
and even embedded systems use to have enough mem-
ory for the extra storage required by this methodology.

2.1 Change sensitivity threshold
(CST)

In the implementation of any change-driven process-
ing algorithm a new design parameter appears: it is
the change sensitivity threshold (CST). This thresh-
old is the pixel di�erence between images that �re
instruction execution: if the value of a pixel changed
equally or above this threshold the change is consid-
ered signi�cant and the corresponding instructions are
�red; otherwise no action is taken.

A similar threshold parameter can be found in
most motion detection algorithms, though the mean-
ing in those cases is slightly di�erent. In general mo-
tion detection algorithms, object detection is carried
out by applying a threshold to the image [8] using
some smart threshold calculation depending on the
algorithm to be implemented [9]. The CST discussed
in this paper is di�erent since it is the threshold that
�res local pixel instructions, thus it is not a global
threshold for performing high level tasks as object seg-
mentation.

For most cameras, the intensity level of a pixel
is given as an 8-bit binary number, ranging from 0
to 255. The minimum intensity di�erence is 1 in this
case. If the CST is set to 1 (minimum di�erence),
the results of the classical and the change-driven al-
gorithms are exactly the same. It is possible to in-
crease the CST so the algorithm becomes less sensi-
tive to image changes and the number of pixels to �re
instructions decreases. The higher this CST is, the
faster the execution of the algorithm, but the results
will be also less accurate. This CST can be consid-
ered as a compression parameter that can be adjusted
depending on the accuracy and speed required.

Digital cameras are not perfect and it is possi-
ble to see intensity level variations between consec-
utive frames, even with good illumination conditions.
Many times the noise observed among images is higher
than 1. Setting a CST of only one unit makes no sense
for those images, since it is possible to choose a CST
close to the average level of noise among images with-
out loosing accuracy. On the other hand, some algo-
rithms are more sensitive to CST than others; some
algorithms give the same results even if the CST is set
to a very large value compared to the average noise,
obtaining a larger speed-up. Other algorithms do not
allow this CST enlargement though it is still possible
to obtain a high speed-up compared to the classic im-



plementation. It is necessary to perform some tests to
�nd the highest CST suitable for each speci�c appli-
cation or algorithm.

3 Circle tracking using the
Hough transform

The experiment employed to evaluate the change-
driven technique is the tracking of one circle with a
speci�c radius. The algorithm �nds a speci�c circle
in the image and gives its position. The Hough trans-
form [6] is employed to �nd the circle, though there
are other algorithms that can �nd circles for any ra-
dius, but with higher processing requirements [7]. The
Hough transform has been chosen because it is one of
the most widely used, it is simple and reasonably ro-
bust against noise and contour occlusions, neverthe-
less, it is still computationally expensive and as such,
it is a good candidate for improvements using change-
driven processing.

3.1 Classical algorithm implementa-
tion

The classical implementation of the circle detection
algorithm, based on the Hough transform, consists in
�rst detecting the edges of the object in the image.
After that, an array of votes is built. For each edge
point in the image, a circle is added to the array of
votes. The superposition of these circles in the ar-
ray of votes produces the Hough plane. The contour
of any circle in the image with the speci�ed radius
produces a maximum at this plane. In the real imple-
mentation of this algorithm it is possible to see many
maxima; some of them belong to the real circle be-
ing recognized, but there are other maxima that do
not correspond to any circle and are found in images
with many edges. One algorithm re�nement consists
in looking only for maxima where data changes are
sharp, which usually only happens for real circles.

The edge detection of the algorithm �rst stage
has been implemented by simply computing spatial
derivatives. Afterward, edges are detected if the
derivative intensity level at the pixel is above some
�xed threshold. Once the edges have been detected,
a circle for each pixel belonging to and edge is added
to the array of votes. Afterward, maxima are found
looking for those places where data change is higher.
The classical implementation of this algorithm applies
all these steps to every pixel of any image in the se-
quence.

3.2 Change-driven algorithm imple-
mentation

The algorithm is signi�cantly di�erent when change-
driven processing is applied. In the �rst stage of the

algorithm, only the spatial derivatives of the pixels
that have changed and their neighbours are computed.
It is necessary to have extra storage for the previous
frame spatial derivatives. The stages of the algorithm
are computed for single pixels or single data streams,
instead of calculating one complete stage for the full
image. The Hough transform is computed right af-
ter the spatial derivative of the pixel that has just
been computed. Once the spatial derivative has been
calculated for the pixel that has changed, the edge
condition of that point must be veri�ed; if this point
is an edge, and it was already an edge, nothing has
to be done; if it was not an edge and now it is not
an edge yet, nothing has to be done, but if the con-
dition changes the array of votes (Hough plane) must
change accordingly. Therefore, there are four situa-
tions depending on the current spatial derivative and
the last calculated derivative: if both are above or be-
low the edge threshold, there is no need to calculate
the circle for the Hough plane; if the new derivative
is above the threshold and the old is below, a new
circle must be added to the Hough plane (a new edge
point appeared), but if the new derivative is below the
threshold and the old is above, the circle must be re-
moved (an edge point disappeared). In this way, the
Hough plane is calculated based on the previous and
adding and removing circles from it depending only
on the pixels that have changed. The di�erence with
the classical algorithm is clear: in the classical imple-
mentation the Hough plane is calculated for every im-
age starting each time from an empty array, while the
change-driven implementation takes the Hough array
of the previous image and changes it depending only
on the image pixel changes.

Once the Hough plane has been calculated, the
same strategy of change-driven processing is applied
to this plane: only those points in the Hough plane
that have changed are employed to calculate the �nal
coordinates of the circle. For those points, neighbour
di�erences are calculated to detect maxima. For these
maxima there is a similar situation as in the edge de-
tection step: if the new di�erence value and the old
one are above or below the circle detection threshold,
nothing changes; but if the new one is above and the
old below, there is a new point that must be consid-
ered as the possible circle centre being tracked; on the
other hand, if the new di�erence is below the thresh-
old and the old is above, this point must be removed
from the point list of possible circle centres. There
is a list of possible circle centre coordinates and de-
pending on the last process, coordinates are added or
removed from this list. At the end of the process, the
calculation of the average of points in the list (after
removal of isolated non signi�cant points) gives the
calculated coordinates of the circle in the image.



4 Experimental results
The change-driven processing and the classical algo-
rithms have been implemented. Both algorithms yield
the same results (correct coordinates of the circle be-
ing tracked) but at signi�cantly di�erent execution
speeds. The test computer platform has been a PC,
with Intel Pentium IV at 2.3 GHz. Both algorithm
implementations have been tested using several se-
quences of a pendulum. Each sequence has been
recorded at di�erent distances, thus giving a moving
circle of di�erent radius for each image sequence. The
reason for this set of sequences is to have di�erent
sizes of the object being tracked to see the impact of
the object size in the speed-up of the algorithm. Fig-
ure 1 shows four images of the last four test sequences,
speci�cally for radius of 24, 35, 46 and 58 pixels. Im-
ages have a resolution of 320x240 pixels and have been
recorded using a progressive scan digital still camera
at 25 fps.

4.1 Execution time analysis
Execution time has been measured for each algo-
rithm. Figure 2 shows a plot with the time required
for each algorithm to process one single image. The
change-driven algorithm can be implemented with dif-
ferent CST values. The change-driven algorithm with
CST=1 is totally equivalent to the classical implemen-
tation, nevertheless the value employed for compari-
son has been CST=5 since this is the average noise
measured among images and the results are the same
(see speed-up discussion in next section).

For both classical and change-driven algorithms,
the faster execution is obtained when the moving ob-
ject is small. The algorithm based on changes shows
an almost linear relationship between the circle ra-
dius and the execution time per image. This is so
because the operations executed in this case depend,
almost exclusively, on the pixels which have changed
from one frame to the next. These pixels belong to
the circle periphery so their number is linearly related
to the circle radius. The execution time of the classi-
cal algorithm also increases with the circle radius, but
it reaches a maximum and it even decreases in the
last sequence (big object). The execution time of the
classical algorithm depends on many factors, but es-
pecially of the number of edge points in the image and
the size of the circles to add to the array of votes. For
big circles (last sequence) the number of edge points
in the image decreases since the circle has no internal
edges and compensates the higher circle radius to be
drawn.

4.2 Change-driven speed-up
The speed-up of the change-driven algorithm com-
pared to the classical has been tested at di�erent CST
values. The CST test values have been 1, 5, 10 and

Figure 1: Four images of the last test sequences

15. Figure 3 shows the speed-up for these CST values
except for CST=1, since it gives the same results than
CST=5. For CST values around 5 and below, the cir-
cle coordinates obtained from the change-driven algo-
rithm are the same as those given by the classical. For
higher CST values the coordinates were slightly di�er-



0

200

400

600

800

1000

1200

1400

10 15 20 25 30 35 40 45 50 55 60
Object radius (pixels)

P
ro

c
e
e
s
in

g
ti

m
e

p
e
r

fr
a
m

e
(m

s
)

Classical

Change-driven (CST=5)

Change-driven (CST=15)

Figure 2: Measured time required for each algorithm
to process one image depending on the object radius

ent though they matched the real coordinates of the
circle. For values above CST=15 the algorithm starts
to give incorrect values for the circle coordinates.

0

2

4

6

8

10

12

10 15 20 25 30 35 40 45 50 55 60

Object radius (pixe ls)

S
p

e
e

d
-u

p
(t

im
e

s
fa

s
te

r
th

a
n

c
la

s
s

ic
a

l)

CST=5

CST=10

CST=15

Figure 3: Speed-up obtained with the change-driven
processing for several CST

The highest speed-up is obtained setting the high-
est CST and the smallest object. The evolution is
quite similar in all cases. With a CST of 15 the
speed-up is always higher, especially for small circles
where the speed-up is more than 10 times, while with
CST=5 it is around 6. For this experiment, the worst
speed-up (lowest CST and largest object) is still two,
which means that change-driven processing is at least
twice faster than the classical, reaching up to 10 times
speed-up for small moving objects.

The plots of the speed-up and execution time with
CST=1 have not been included in previous �gures
since the results are almost the same than CST=5.
Figure 4 shows the speed-up for CST=1 and CST=5.
In both cases the results are the same except for the
smallest circle where the implementation with CST=5
is faster than the implementation with CST=1. The
reason is that high CST values �lter noise among im-

ages and the number of points that change due to
noise is usually small compared to the pixels that
change due to object movement, except for the case
where the object is small and the number of object
points is comparable to the number of pixels that
changed due to noise.

0

1

2

3

4

5

6

7

10 15 20 25 30 35 40 45 50 55 60

Object radius (pixe ls)

S
p

e
e

d
-u

p
(t

im
e

s
fa

s
te

r
th

a
n

c
la

s
s

ic
a

l)

CST=1

CST=5

Figure 4: Speed-up comparison for CST=1 and
CST=5

4.3 Change-driven algorithm worst
case

The experiment of one object tracking while the cam-
era is still is especially good for change-driven process-
ing, since only the object pixels change between two
consecutive images. In fact, the smaller the object,
the faster the execution. Therefore the question that
arises is if the change-driven algorithm would be still
good in situations where a signi�cant part of the image
changes and not only a small part of it. Another ex-
periment has been performed using a sequence where
the camera, instead of the single object, moves. The
object to be detected has been the same pendulum,
this time still, with radius 40 pixels. The execution
time per frame for the classical algorithm has been 667
ms, while the change-driven algorithm took 530 ms.
While the speed-up is not very high (20% faster) it
is still pro�table to use the change-driven processing,
even for the case where the whole image changes.

If all pixels change in an image, the change-driven
implementation should give a slightly higher process-
ing time than the classical, since it usually requires
extra computation. Nevertheless, this last experiment
has shown that even when the whole image moves, the
change-driven algorithm is faster that the classical for
this speci�c case. The reason is that even when the
whole image moves, not all the pixels change, since
there could be some objects in the image with a con-
tinuous intensity level and, for those objects, a signif-
icant change is only found at the object borders.



5 Conclusion
In this article, a procedure for speeding-up the pro-
cessing of image sequences has been presented. This
methodology is based on the data changes from one
image to the next. It has been tested using a classi-
cal sequence processing task: circle tracking. On this
problem, the change-driven algorithm is twice faster
than the classical in its worst case, reaching a speed-
up of 10 depending on the tracked object size and
compression threshold. Even in the case that the
whole image changes, this procedure is still advan-
tageous, though the speed-up is not as high as when
tracking a single object movement from a still cam-
era. This methodology introduces a new parameter in
the processing which allows the adjustment of speed
and accuracy; this parameter is the Change Sensitiv-
ity Threshold. This CST �xes a compression ratio
for the number of instructions to execute and it is
directly related to algorithm speed-up. This method-
ology for classical algorithm image sequence process-
ing implementation is general and can be adapted to
many existing algorithms; speed-up is algorithm de-
pendent and must be analyzed case by case.

Acknowledgements
This work has been supported by the project UV-AE-
20050206 of the University of Valencia and the project
GV2005-184 of the Generalitat Valenciana.

References
[1] E. Acosta, V. Bove jr., J. Watlington, and R. Yu.

Recon�gurable processor for a data-�ow video pro-
cessing system. In J. Schewel, editor, SPIE:
FPGAs for Fast Board Development and Recon-
�gurable Computing, pages 83�91, Bellingham,
Washington, 1995.

[2] K. Aizawa, Y. Egi, T. Hamamoto, M. Hatori,
M. Abe, H. Maruyama, and H. Otake. Com-
putational image sensor for on sensor compres-
sion. IEEE Transactions on Electron Devices,
44(10):1724�1730, October 1997.

[3] Eugenio Culurciello, Ralph Etienne-Cummings,
and Kwabena A. Boahen. A biomorphic digital
image sensor. IEEE journal of solid-state circuits,
38(2), February 2003.

[4] T. Hamamoto, R. Ooi, Y. Ohtsuka, and
K. Aizawa. Real-time image processing by using
image compression sensor. In International Con-
ference on Image Processing, ICIP'99, volume 3,
pages 935�939, October 1999.

[5] Thomas A. Holz and John G. Harris. An integrate
and �re pixel with contrast outputs for a cmos

imager. In IASTED International Conference on
Circuits, Signals, and Systems, February 2003.

[6] C. Kimme, D. H. Ballard, and J. Sklansky. Finding
circles by an array of accumulators. Communica-
tions of the ACM, 18:120�122, 1975.

[7] Filiberto Pla. Recognition of partial circular
shapes from segmented contours. Computer Vi-
sion and Image Understanding, 63(2):334�343,
March 1996.

[8] E. Rivlin, M. Rudzsky, R. Goldenberg, U. Bo-
gomolov, and S. Lapchev. A real-time system
for classi�cation of moving objects. In Proceed-
ings of the 16 International Conference on Pattern
Recognition - ICPR'02, volume 3, pages 688�691,
Québec City, Canada, August 2002.

[9] Paul L. Rosin. Thresholding for change detection.
In ICCV, pages 274�279, 1998.


