
A Log-polar Image Processing System on a Chip
Fernando Pardo, Jose A. Boluda and Julio C. Sosa

Departament d’Inform̀atica
Universitat de Val̀encia

Avda. Vicent Andŕes Estelĺes S/N
46100 Burjassot, Spain

Email: Fernando.Pardo@uv.es, Jose.A.Boluda@uv.es, jucesosa@alumni.uv.es

Abstract— This paper deals with the implementation, in a high
density reprogrammable device, of a complete log-polar image
processing system. The log-polar vision reduces the amount of
data to be processed and simplifies several vision algorithms,
making it possible the implementation of a complete processing
system on a single chip. The image processing system has a
conversion module from cartesian to log-polar coordinates that
has been developed by means of the CORDIC algorithm, and a
processing module for implementing differential algorithms as a
pipeline of differentiation stages. A reconfigurable approach on
a high-density chip combines software flexibility and hardware
performance appearing as specially suited for systems with hard-
ware restrictions. Moreover, the log-polar data reduction allows
the use of the internal circuit RAM modules as intermediate
frame-grabbers. Two algorithms have been synthesized into the
reconfigurable device showing its flexibility.

I. I NTRODUCTION

The increasing density and performance of reconfigurable
devices, and the device families of system-on-a-programmable
chip (SOPC), make a reconfigurable approach as specially
suited for systems with hardware restrictions. In this way, it
is desirable hardware performance combined with software
flexibility and low power consumption, weight and size for,
as an example, an autonomous robot.

Space-variant vision emerges as an interesting image rep-
resentation, since information reduction is interesting for a
system with hardware restrictions. Specially the log-polar
mapping shows, as a particular case of space-variant vision,
interesting properties in addition to the selective reduction of
information. The most remarkable mathematical property of
log-polar images includes the simplification of image rotation
and scaling along the optical axis.

The data reduction achieved by the log-polar transformation
makes it possible the integration in a SOPC of a complete
image processing system, since the frame grabbers employed
are reduced to simple small internal RAM modules, and the
image processing logic is small enough for its inclusion in
the chip. Moreover, the chip reconfigurability is used for
fine-tuning the log-polar transformation parameters and for
choosing among several different image processing algorithms
that can be synthesized into the SOPC.

II. L OG-POLAR MAPPING

Fig. 1 shows the transformation between the camera focal
plane (left) and the cortical or log-polar representation of an
image (right). The cortical plane is divided in two areas:

ξ=r =log rξ

Fovea

γ=θ

x

y

Retina

Fig. 1. Log-polar mapping from focal to cortical plane

the fovea and the retina. The fovea is the center part of
the image and the retina is the periphery. It is necessary
to make this distinction, since the log-polar transformation
cannot be physically implemented due to the singularity of
the logarithmic function at cero (origin); the density of pixels
just in the image center is infinitum. For this reason, the image
is divided in these two areas: in the retina the transformation
is log-polar while in the fovea it is just polar to have a finite
number of pixels in the center. There are other solutions for
the fovea, but this one is interesting from the image processing
point of view, since it provides a single processing plane.

The following equations define the retina and fovea trans-
formation shown in Fig. 1:

ξ =

{
ξf

r
A if r < A (fovea)

ξf + 1
B log r

A if r ≥ A (retina)

γ = θ

(1)

whereξf is the frontier between the retina and fovea (this is to
say, the number of rings in the fovea) and(r, θ) are the polar
coordinates calculated from cartesian coordinates as follows:

r =
√

x2 + y2

θ = arctan
y

x

(2)

where(x, y) are the cartesian coordinates of the pixel being
transformed. The constantsA and B of (1), tune the trans-
formation between cartesian and log-polar: theA constant is
the radius of the fovea measured in cartesian pixels, while
B is an exponential growing factor, which value is usually
calculated fromA and the size of the cartesian image, so that
the log-polar view field matches that of the cartesian image.

A. Transformation circuits

There are several solutions for obtaining log-polar images.
The simplest solution consists of transforming the typical
cartesian image obtained from almost any standard camera, as
part of the image processing software. This solution is simple
but it takes CPU time that could be better employed in other
tasks, specially thinking on real-time image processing appli-
cations. The log-polar image generated using this approach has
also the problem of the lack of matching between the cartesian
and resulting log-polar image pixels, specially in the center of
the log-polar image where resolution is usually higher than
the cartesian image.

Other solution for the log-polar image acquisition is the
use of a custom log-polar camera based on a log-polar image
sensor [2]. This is the best solution for real-time applications,
but it has also some problems. For example, these log-polar
cameras are not widely available and they are not as cheap as
standard cameras. In the other hand, the image quality obtained
from log-polar sensors, though currently high, is not as good
as most standard cameras.

The proposed solution is good for real time problems and
offers good enough image quality for most applications. It is
based on the LOG-CORDIC circuit that is a custom implemen-
tation of the cartesian to log-polar image transformation based
on the CORDIC algorithm. This approach has the advantage
of online reconfigurability, for log-polar mapping tuning, and
high speed processing, taking no time of system CPU. The
main problem of this approach is the same as the one of
the software mapping, and it is the error introduced when
transforming squared to log-polar pixels. For most applications
this error is negligible and has little impact on the final
processing results.

A circuit that performs a cartesian to log-polar image
transformation can be implemented using different strategies.
The simplest strategy consists of a look-up-table (LUT) for
the coordinate transformation [3]. In this case, the hardware
for the log-polar image transformation consist of the look-up-
table, implemented on RAM or ROM, and a custom circuit for
image transformation. The main problem with this approach is
the look-up-table itself. Cartesian images are about512× 512
in size, which means a LUT of 256 K entries. The results
of the LUT are the log-polar coordinates, around76 × 128,
which means two bytes for each entry of the LUT, giving a
total LUT size of 512 Kbytes. This LUT size can be reduced
taking into account the cartesian and log-polar symmetries,
but it is still necessary to have a LUT of at least 128 Kbytes.
Furthermore, the LUT capacity imposes a limitation when
trying to transform larger cartesian images.

The finally implemented possibility, consists of calculating
the transformation from cartesian to log-polar coordinates for
every pixel coming from the camera. The advantages of this
approach are the compact circuitry and the possibility of
implementation as a part of a SOPC. The chosen implemen-
tation for the log-polar transformation has two stages: the
first calculates the polar coordinates (radius and angle) of the

cartesian coordinates(x, y) unsing CORDIC. The second stage
then calculates the logarithm of the radius giving the final log-
polar coordinates.

B. Computing log-polar coordinates using the CORDIC the-
ory

CORDIC (COordinate Rotation DIgital Computer) is an
iterative algorithm for the calculation of a rotation of a two
dimensional vector in linear, circular or hyperbolic coordinate
systems. It was first introduced by Volder [4] in 1959 and later
generalized by Walther [5]. The idea behind this algorithm
is to perform a rotation using simple shift and addition
operations. It is possible to extend the rotation operation to
obtain trigonometric operations as sine and cosine and even
more complex as cartesian to polar transformations [6]. This
algorithm can be further extended to hyperbolic functions, thus
more complex operations as logarithms can be performed.

The simplest CORDIC algorithm is enough for our purposes
and it is the one explained here. There are other CORDIC al-
gorithms which may have higher performance [7]. Let(x0, y0)
be the cartesian coordinates of a point and(xn, yn) the point
after rotation of aθ angle. The equation for this transformation
is as follows:

xn = x0 cos θ − y0 sin θ

yn = y0 cos θ + x0 sin θ
(3)

This equation can be transformed to the following more
convenient form:

xn = cos θ(x0 − y0 tan θ)
yn = cos θ(y0 + x0 tan θ)

(4)

If the rotation angles are restricted so thattan θ = 1/2i (i =
0, 1, . . . , n), the multiplication by the tangent term is sim-
plified to a simple shift operation. Taking this property into
account, it is possible to decompose any rotation in a series
of several, each time smaller, rotations which follow this
restriction. In that case, any angle rotation operation can be
performed by a series of shift and addition operations and a
final multiplication (due to thecos θ factor). Thei stage of the
series follows this equation:

xi+1 = Ki(xi − yidi2−i)

yi+1 = Ki(yi + xidi2−i)
(5)

where:

Ki = cos θi = cos
(

1
arctan−1 2−i

)
=

1√
1 + 2−2i

di = ±1
(6)

All Ki factors are constants that can be applied at the
end of the rotation operation. This final product term can
be considered as a gain of the circuit. When this CORDIC
operation is part of a larger circuit, it is possible to include
this multiplicative factor in other following operations for
simplification. This is especially true for the LOG-CORDIC
transformation circuit, where this factor has been completely

cancelled, as it will be shown later. The gain factorAn is the
product of the inverse of allKi:

An =
n∏

i=0

√
1 + 2−2i (7)

The factordi, shown in (5) and (6), fixes the direction of
the corresponding elementaryi rotation. This sign on each
stage depends on the angle to be shifted, and has the goal
of approaching the result to the global angle at each stage.
One convenient way to safely converge to the final angle,
consists of defining a difference variable which informs about
the proximity of the target angle. This variable is also useful
to define the value fordi:

zi+1 = zi − di arctan 2−i

di =

{
−1 if zi < 0,

+1 if zi ≥ 0

(8)

Equations (8) and (5), without theKi constants, conform
the CORDIC equations in rotation mode. The only operations
needed to make any calculation are additions and shifts, since
the arctan 2−i is previously calculated and stored in a small
table as part of the CORDIC circuit. These equations are
useful for the computation of trigonometric functions. Given
(x0, y0, z0) the initial values, the CORDIC rotator in rotation
mode gives the following results:

xn = An(x0 cos z0 − y0 sin z0)
yn = An(y0 cos z0 + x0 sin z0)
zn = 0

(9)

The CORDIC algorithm in rotation mode solves sine and
cosine operations just giving the angle toz0 and the right
values tox0 andy0. For example, the sine is calculated making
x0 = 1 andy0 = 0, the result is given inyn.

There is another common mode for the CORDIC rotator and
it is the vector mode. This mode consists of minimizing the
yn term instead of thezn angle. This simple change produces
a rotation until the rotated point reaches thex axis; the rotated
angle isθ and the resultingxn is r in polar coordinates:

xn = An

√
x2

0 + y2
0 = r

yn = 0

zn = z0 + arctan
(

y0

x0

)
= z0 + θ

(10)

The equation for thedi sign in vector mode must minimize
yi. The definition fordi is then:

di =

{
−1 if yi < 0,

+1 if yi ≥ 0
(11)

This vector mode of the CORDIC rotator has been imple-
mented as part of the cartesian to log-polar transformation
circuit. The(x, y) coordinates of the image pixel are entered
in the CORDIC circuit as(x0, y0) while z0 = 0. In this way
the results are directly the(r, θ) polar coordinates.

III. PROCESSING LOG-POLAR IMAGES WITH

DIFFERENTIAL ALGORITHMS

Differential algorithms, developed in log-polar coordinates,
extract dynamic information using the temporal and spatial
derivatives of the image sequence. These algorithms are com-
putationally intensive due to the image size, but they benefit
from log-polar data reduction. In this way, the implemented
algorithms into the processing stage of the reconfigurable
board, optimize temporal and spatial differential computations
using double-port memories. The small log-polar image size
allows the frame-grabbers integration in a single chip. In
this way, the implemented algorithms into the reconfigurable
circuit must optimize temporal and spatial differential compu-
tations. Initially two different algorithms have been proposed
as processing stage.

A. Motion detection independent of the log-polar camera
movement

Originally developed in Cartesian coordinates [8] and
adapted to log-polar coordinates with a proved experimental
effectiveness [9], this algorithm detects moving objects with
respect to the static background. In a moving platform, there
are image variations due to the self camera movement that
may appear as moving objects with respect to the background.
This algorithm is able to filter the image displacement due
to the camera self movement. The constrains are related to
several smoothness conditions in the grey level image and
to the camera ego-motion. Theoretically, only objects which
are moving with respect to the background are detected. The
algorithm constrains are related to grey level and movement
smoothness, and can be formulated as follows:

∂2E(ξ, γ, t)
∂ξ2

=
∂2E(ξ, γ, t)

∂γ2
=

∂2ξ

∂t2
=

∂2γ

∂t2
= 0 (12)

For any point of the cortical plane the grey level image
must be smoothed, and the camera movement must be linear
along the optical axis. Te focus of expansion must be in the
center of the sensor. This movement is transformed in a trans-
lation along the radial coordinate. Under these constrains, the
second temporal derivative of the image vanishes everywhere
except for the self-moving object. Therefore, the algorithm is
summarized as follows: First, the image must be smoothed,
next the first order temporal derivative must be calculated
from two consecutive images, and finally the second temporal
derivative must be computed, selecting the zero values to
binarize the image and marking self-moving objects. In this
way the algorithm implementation into the programmable
device must compute efficiently image temporal differences. In
fact, due to the non-exactly accomplishment of the algorithm
conditions, the condition for a point that belongs to a self-
motion object is that the second temporal derivative of the
log-polar images must be larger than a threshold.

B. Time to impact computation

A second differential algorithm based on log-polar vision is
the time to impact computation of a camera to an approaching

surface [10]. The time to impact (τ) can be computed in the
sensor plane. In the case of polar images and supposing an
approaching movement along the optical axis at the sensor
center, this magnitude is:

τ = K
−∂E

∂ξ

∂E
∂t

(13)

where K is a constant that depends on the log-polar transform
performed,E(ξ, γ, t) is the log-polar image sequence,∂E

∂ξ is
the radial gradient and∂E

∂t is the first order temporal derivative.
Equation (13) shows that the time to impact can be computed
as a division of two differential magnitudes. A previous stage
for smoothing the original log-polar images is required for
avoiding non-sense derivatives, like derivatives at the edges.

IV. OVERALL SYSTEM SYNTHESIS

The overall system has been developed into an APEX
PCI board from Altera that includes a SOPC APEX 20KC
device (EP20K1000C) which has 38.400 Logic Elements
(LEs) equivalent to106 gates (or1.7 · 106 system gates)
and 320 Kbits of RAM. Furthermore, the board follows the
mechanical and electrical PCI interface specifications and it is
designed for the integration of a PCI mega-core as input/output
interface. A 64 bits, 66 MHz master PCI interface fills around
1.400 LEs, which is less than 4% of the resources. This
board and this device has been employed for synthesizing
the image processing module that will be incorporated as
a part of an autonomous robot navigation system. All the
modules have been designed in synthesizable VHDL and the
memory modules have been generated as Altera macro-blocks,
everything developed in the Quartus II synthesis environment.

A. The log-polar transformation circuit

The base for transforming cartesian to log-polar images is a
circuit for transforming cartesian to log-polar coordinates. The
architecture for this image transformation circuit is shown in
Fig. 2.

There are three blocks which form the circuit for image
transformation: the counters, the LOG-CORDIC circuit and
the memory. The counter block generates the cartesian coordi-
nates at every clock cycle. At the same time, the corresponding
I(x,y) grey level value enters the circuit. The (x,y) coordinates
are transformed to log-polar coordinates at the LOG-CORDIC
circuit; this circuit is discussed below. Finally, the grey level
value is written to an internal memory at address (ξ,γ). This
memory stores the resulting log-polar image and it is read out
afterward for further processing.

The circuit for the memory is more complex than shown in
Fig. 2, since the size of this memory is less thanξ×γ locations.
The aim was not only to save memory bits in the circuit, but
to solve a problem with the log-polar mapping. This problem
has to do with the correspondence between one pixel in the
cartesian plane to many of the log-polar plane; for example, the
center pixel of the cartesian image plane, maps to the first ring
in the center which has 128 pixels (considering there are 128

Counters

MEMORY
(ξ,γ)

Ι(ξ,γ)

Data
preparation

and
Quadrant
Selection

...

CORDIC

Stage 1

Stage 0

Stage n

(,γ)r
Logaritmic

Fovea−Retina
Table

Post Processing
Rounding

LOG−
CORDIC

I(x,y)

(x,y) (ξ,γ)

(x,y) (ξ,γ)

LOG−CORDIC

Fig. 2. Cartesian to log-polar transformation block diagram

pixels per ring). To solve this problem, pre-coders have been
included for the memory addressing so there is only one byte
addressed by a set of log-polar coordinates. In the example
before, there is a single byte which is addressed by every of
the 128 pixels of the first ring. Furthermore, one cartesian
pixel can correspond to several log-polar pixels, which can
be located at several rings, specially at the center where the
log-polar pixels are usually smaller than cartesian pixels. The
correspondence among these cartesian and log-polar pixels has
been implemented with a previously calculated table.

The LOG-CORDIC circuit has the function of transforming
cartesian to log-polar coordinates following the transforma-
tion (1). From this equation it is possible to see that the
constantsA and B are included in theξ radial component.
Furthermore, any amplification constant of the CORDIC cir-
cuit, asAn, is also included in theξ calculation. In the other
hand, the only parameter affecting theγ angular component,
is the number of pixels for each ring. All these factors must
be included in the circuit.

The angular component is simply calculated using the
CORDIC algorithm. The number of pixels per ring is coded
in the circuit using the definition of the arctangent table. The
CORDIC algorithm uses for the calculation ofzi+1 a table of
previously calculated values for allarctan 2−i. If this arc-
tangent is calculated in the range of[0..2π), the resulting
angular parameter will be a number expressed in radians. But
if tangents are calculated in the range[0..γmax), whereγmax is
the number of pixels per ring, the angular result will be directly
the pixel in the ring without any further transformation. We
then compute the table of arctangents taking into account the
number of pixels per ring; if a different number of pixels
per ring in the transformation is desired, it is necessary to
reconfigure the circuit to accommodate the new arctangent
table. All these changes to the angular parameter do not affect
the radial componentr which is used to calculate the log-radial

componentξ.
The CORDIC algorithm directly gives the angular compo-

nent for both polar and log-polar coordinates sinceθ = γ,
but it only gives the value of the radial componentr of the
polar coordinates, apart from some constant to be applied to
this coordinate. Ther coordinate must follow several transfor-
mations to getξ. This transformation also needs a logarithmic
operation. It is difficult to have a circuit that performs all these
calculations, especially the logarithmic function.

Taking into account that there is a finite number of radialr
and log-radialξ components, it is simple to have a table to map
r andξ. This table has been previously calculated and it takes
into account all the parameters and transformations between
r andξ. The complexity of this table is like 10% of a simple
logarithmic circuit, and this last one would only calculate
the logarithm and not all the other factors. Furthermore, any
processing circuit would have a larger delay than this simple
table.

The block diagram of the LOG-CORDIC circuit itself is
also shown in Fig. 2. The first block calculates the quadrant
where the cartesian point is located, and then moves the (x,y)
coordinates to the first quadrant, since the CORDIC algorithm
works at this quadrant. The second block is the CORDIC
core itself working in vector mode; it is formed by several
pipelined stages. Each stage calculates one of the steps of the
CORDIC algorithm. Ten stages have been employed for this
implementation. The third block puts the results in the correct
quadrant and rounds them to the nearest 10-bits integer (the
internal size for this CORDIC operator is 12 bits). The last
block is the table that summarizes all parameters contributions
and logarithmic-linear (retina-fovea) transformations.

This LOG-CORDIC circuit has been specified in VHDL
and all the constant tables has been calculated and coded
in a C++ program. The design takes its start point from an
existing core of the CORDIC algorithm [11]. The data path
for the input/output bus is ten bits wide, but the internal
CORDIC data bus is 12 bits to allow good output results after
processing. This number of bits is enough for transformations
that are about512× 512 in the cartesian plane, and76× 128
in the log-polar plane. This number of bits is also good for
larger cartesian images, up to1024×1024, and512×512 for
log-polar, though it makes no sense to use a large log-polar
size. With these sizes the complete LOG-CORDIC circuit
occupies around 1.200 logic blocks of a device with more than
30.000 logic blocks. The CORDIC element itself occupies the
larger part with 950 logic blocks. The circuit works at 60
MHz with no special refinement, since this speed is already
around ten times above our requirements. Nevertheless, it is
still possible to increase the CORDIC performance using an
efficient mapping for the FPGA [12], [13].

B. Image processing stage

Both algorithms explained at section III have been imple-
mented as the image processing stage of the system. In this
way, the system can choose the most adequate processing
algorithm.

Smoothing
stage

I()ξ,γ

stage
Subtraction

Double port
memories

Double port
memories

bytes
256 Local

memory

stage
Subtraction

temporal differences
Second order

Binarized image

ξ,γ

7.168 7.168
bytes

7.168

bytes

bytes bytes
7.168

temporal differences
First order

Fig. 3. Processing stage for the motion detection algorithm implementation

1) Motion detection algorithm synthesis:The algorithm
explained in section III-A describes a differential algorithm for
detecting objects that move respect the background, discarding
automatically the image displacement due to the camera self
movement when this movement is uniform along the camera
optical axis. The algorithm has been divided into three stages
that work simultaneously as a data pipeline as shown in Fig. 3.
Double port memories of exactly the retinal image size (7.168
bytes) are placed between the stages in order to accelerate
differential computations. Moreover, the first stage has 256
bytes of local memory for storing a log-polar ring. The ring
values are shifted systolically with the aim of computing a grey
level average value for accomplishing the smoothed image
condition of the algorithm.

1) The first stage smoothes the original log-polar image
storing the smoothed image in its double port memory
and simultaneously giving it to the next stage. This
smooth is made with an elementary nine pixels unitary
convolution mask in order to simplify the computations.

2) The second stage computes the first temporal derivative
as an image subtraction, accepting the smoothed pixel
from the precedent stage. It also reads the double port
memory where the precedent smoothed image is stored.
Subsequently, first order differences are calculated as a
simple pixel subtraction. Finally, the differential pixel is
sent to the third stage, being simultaneously stored in
its double port memory.

3) The last stage computes the second order temporal
derivative and binarizes the image. This stage receives
first order differences from the preceding one, simul-
taneously reads the differences previously stored at the
double port memories. The second temporal derivative
image is computed as differences between two first
order temporal derivative images. Moreover, this value
is compared to a threshold that is basically related to

Smoothing
stage

I()ξ,γ

stage
Subtraction

Double port
memories

bytes
256

bytes
128

stage
Division

ξ,γ

7.168 7.168
bytesbytes

memory
Local

memory
Local

 Time to impact

First order temporal
and radial differences

Fig. 4. Processing stage for the time to impact algorithm implementation

the camera movement and scene illumination. The final
result is a sequence of binarized images which have
marks for the points that belong to self-moving objects.

The algorithm has been successfully synthesized into the
APEX20K device, occupying 230.400 RAM bits (70% of the
total available RAM resources) and less than 1.000 LEs.

2) Time to impact computation algorithm synthesis:The
algorithm for time to impact computation has been also
implemented as image processing stage. It has been also im-
plemented with the same methodology of splitting the overall
task into a pipeline of stages, double port memories have been
employed for accelerating the computation of the first temporal
derivative. Again, the algorithm has been divided into three
stages and there are two double port memories. Fig. 4 shows
the algorithm implementation in the reconfigurable pipeline.

1) The first stage is exactly the same smoothing block
designed for the previous algorithm.

2) The second stage computes the first temporal derivative
and the radial gradient. The first order differentiation
is computed through the same image subtraction policy
described previously. Simultaneously, the radial gradient
is computed with the smoothed pixel supplied by the
previous stage, and the pixel corresponding to the infe-
rior ring stored in a local small memory of 128 bytes.

3) Finally, the third stage computes the time to impact map
for each pixel making an integer division of both values.

The algorithm has been also successfully synthesized into
the APEX20K device, occupying near 115.000 RAM bits
(35% of the total available RAM resources) and less than
1.100 LEs. So, it is also feasible to increase the algorithm
accuracy improving the division stage.

V. CONCLUSIONS

Reconfigurable systems on-a-chip appear as a technology
that combines hardware performance, software reconfigura-
bility and low resources consumption. A log-polar image

processing system has been developed in a SOPC. Space-
variant vision has been employed to reduce the total amount
of data to be processed, reducing the memory size for making
possible the implementation of several local frame grabbers
inside the chip.

A circuit for cartesian to log-polar image mapping has
been presented. The core of this circuit is the LOG-CORDIC
circuit which transforms cartesian to log-polar coordinates. We
tailored the CORDIC algorithm for this special purpose and
added extra circuitry for the logarithmic calculation taking into
account all the complex factors of a log-polar transformation.

Furthermore, two different algorithms have also been im-
plemented as processing stage in the reconfigurable SOPC,
showing its flexibility. Both algorithms take advantage of
image reduction and computation simplification. The synthesis
results show that a complete image processing system can
be synthesized in a high-density SOPC chip, including a
complete PCI interface. Log-polar vision has been employed
to reduce the total amount of data to be processed, decreasing
the memory size for making it possible the implementation of
several local frame grabbers inside the chip.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministerio de
Ciencia y Tecnoloǵıa project TIC2001-3546, EU FEDER and
the Generalitat Valenciana project CTIDIA/2002/142.

REFERENCES

[1] F. Ferrari, J. Nielsen, P. Questa and G. Sandini.Space variant imaging,
Sensor Review, 15(2), 1995, 17-20.

[2] F. Pardo, B. Dierickx and D. Scheffer .Space-Variant Non-Orthogonal
Structure CMOS Image Sensor Design, IEEE Journal of Solid State
Circuits, 33(6), 1998, 842-849.

[3] J. Ruiz, C. Nowack and B. Schneider.VIPOL: A Virtual Polar-
Logarithmic Sensor, In Scandinavian Conference on Image Analysis,
SCIA’97, Finland, 1997, 739-744.

[4] J.E. Volder. The CORDIC trigonometric computing technique, IRE
Trans. Elect. Comput. Vol. EC-8, 1959, 330-334.

[5] J.S. Walther.A Unified Algorithm for Elementary Functions, Proc. Joint
Computer Conf. 1971, 379-385.

[6] Andraka, R.: A survey of CORDIC algorithms for FPGA based com-
puters. In: International Symposium on FPGAs, Monterey, California,
USA, ACM/SIGDA (1998)

[7] Antelo, E., Villalba, J., Bruguera, J., Zapata, E.: High Performance
Rotation Architectures Based on Radix–4 CORDIC Algorithm. IEEE
Transactions on Computers46–8 (1997) 855–870

[8] W.G. Chen and N. Nandhakumar.A simple scheme for motion boundary
detection, Pattern Recognition, 29(10), 1996, 1689-1701.

[9] J.A. Boluda and J. Domingo.On the advantages of combining differen-
tial algorithms, pipelined architectures and log-polar vision for detection
of self-motion from a mobile robot., Robotics and Autonomous Systems,
Vol. 37(4), Elsevier, 2001, 283-296.

[10] M. Tistarelli and G. Sandini.On the advantages of polar and log-polar
mapping for direct estimation of time-to-impact from optical flow, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 15(4), 1993, 401-
410.

[11] R. Herveille. CORDIC Core Specification. [Online]. Available at
http://www.opencores.org/projects/cordic

[12] J. Valls, M. Kuhlmann and K. ParhiA unified algorithm for elementary
functions, In IEEE Workshop on Signal Processing Systems (SIPS2000),
Louisiana, USA, 2000, 336-345.

[13] T. Vladimirova and H. TiggelerFPGA Implementation of Sine and Co-
sine Generators Using the CORDIC Algorithm, Military and Aerospace
Programmable Logic Device, MAPLD’99, 1999.

