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Abstract

Image analysisis oneof themostinterestingwaysfor a
mobilevehicletounderstandits environment[1]. Oneof the
tasksof an autonomousvehicleis to get accurateinforma-
tion of whatit hasin front,to avoidcollisionor finda wayto
a target. Thistaskrequiresreal-timerestrictionsdepending
onthevehiclespeedandexternalobjectmovement.Theuse
of normalcameras,with homogeneous(squared)pixel dis-
tribution, for real-timeimage processing, usually requires
highperformancecomputingandhigh imagerates.

A different approach makes use of a CMOS space-
variant camera that yieldsa high frameratewith low data
bandwidth.Thecamera alsoperformsthe log-polar trans-
form, simplifyingsomeimage processingalgorithms. One
of this simplifiedalgorithmsis the time to impactcompu-
tation. Thecalculationof the time to impactusesa differ-
ential algorithm. A pipelinedarchitecture speciallysuited
for differential image processingalgorithmshasbeenalso
developedusingprogrammableFPGAs.

1 Intr oduction

Theaimof thisresearchwork is to analysethemovement
of objectsin front of aself-movingvehicleusingimagepro-
cessingtechniques. The problemof a car in a road has
beenstudiedto find the real-timeconstraintsfor this spe-
cific problem. The combinationof space-variantimaging,
specialisedpipelinedimageprocessingarchitecture,andthe
implementationof atimeto impactalgorithm,hasshown to
be goodenoughto meetthe real-timerequirementsof the
aimedproblem.

As imagestakenby any cameraaretwo-dimensionalob-
jects,it isdifficult to extractinformationaboutthedepthand
distanceof theobjectsin front of thevehicle.If thevehicle
is moving, adynamicanalysisof thechangingenvironment
cangive informationaboutthedistancefrom objects.This
dynamiccomputationis alsousefulwhenobjectsin front�
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of the vehiclearealsomoving. Dynamiccalculationusu-
ally requiresreal-timeconstraintsthat will dependon the
vehiclespeedandobjectmovementsin front of it.

Retinal sensorswidely expandthe possibilitiesof real
time applications[6]. Advantagesrefer to the specialpo-
lar structureof theresultingimagesthatallows simplifying
algorithmsbasedonpolarcharacteristicsof theimages.

Camerasprovided of suchsensorscanbe usedto eval-
uatemotion due to their small size and portability, much
more compactthan conventionalcameras.They generate
imageswith aselectivereductionof information,morecon-
centratednearits opticalcenter, thefovea,andlessaccurate
towardsthe periphery. The reductionof redundantinfor-
mationdiminishesthecomputationalburdenof mostalgo-
rithms. Thus,retinal sensorsbecomean interestingdevice
for roboticsandrealtime systemsfor navigation.

One possibility for a space-variant camerais the log-
polar mapping. The focal plane of this camerahas two
areaswith analogousnamesas the humaneye: the retina
is the outer part and it occupiesmost of the sensorarea,
in this part the distanceof pixels to the sensorcenterin-
creasesexponentially thus decreasingpixel resolutionto-
ward theperiphery;thefoveais thesmall centralpartwith
thehighestresolution,it followsthesamepolarpixel distri-
bution thoughpixel distanceto thecentreincreaseslinearly
insteadof exponentially. This log-polartransformationcan
be shown in figure 4 wherethe circle representsthe focal
or retinalplane,while thecartesianrepresentsthecomputa-
tion or cortical plane. The computationplaneis the trans-
formationof the focal planeto the computermemory;this
computationplaneis what the computersseesof the envi-
ronment.

The use of this kind of log-polar imagesreducesthe
amountof datato beprocessedthusallowing higherimage
processingrates.In orderto haveevenhigherimagerate,a
pipelinedarchitectureis proposed.This architectureis spe-
cially suitedfor imageprocessingalgorithmsrequiringspa-
tial and/ortime derivatives. Eachelementin the pipeline
haslocal memoryto storelast imagesthus allowing time
derivativescalculation.



2 Image processingand acquisition architec-
ture

The overall architectureis shown in figure 1. The el-
ementsof the systemare: the log-polar camera,the spe-
cialized pipelinedarchitecture,and a commonhost com-
puter(PC).Log-polar imagestaken by the log-polarcam-
eraenterthehostcomputerthatbypassestheimagesto the
pipelineof processingelements(threefor thetimeto impact
experiment). The processorpipeline processesthe image
flow providing theresultsto thehostcomputer, whereother
higher-level tasksareperformed(imagesegmentation).A
descriptionof eachelementfollows.
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Figure 1. Overall system architecture .

2.1 Log-polar camera

Figure2 shows themainblocksof thelog-polarcamera.
Themostimportantelementsof thecameraarethecontrol
unit andthe log-polar sensor.
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Figure 2. Log-polar camera.

The control unit is an Altera CPLD of the FLEX 8000
family. It is a low-cost programmablelogic device with
4000usablegates.Themainfunctionof thecontrolunit is
to communicatethe sensorwith the PC parallelport. This
unit alsogeneratetheaddressesfor the log-polarsensorto
acquireimagesatspecifiedandprogrammablerates.

The log-polarsensorhasbeendevelopedusingCMOS
technology[2]. In theretina(outerarea),eachring has128
pixelswhosewidth grows towardtheperiphery. Thefovea,
unlike theretina,doesnot havea fixednumberof pixelsby

circumference;theamountof pixelsdiminishestowardthe
centreup to only onepixel. TheCMOSsensoris mounted
on a68-pinPLCCsocket.

CMOStechnologyallowsrandomaccessto any pixel of
thesensor. Thecontrolunit indicatesto thesensorthepixel
to beread.An operationalamplifieris necessaryto amplify
the small signal from the sensorandto subtractthe Fixed
PatterNoise(FPN).ThisOPAMP alsochangesthegainand
adjustthesignalto therangeof theA/D converter. Thecon-
verteris a CMOS10-bit 20 MSPSA/D converter. Though
it is a 10-bit converter, thecameraonly makesuseof the8
mostsignificantbits for precision.TheA/D convertergives
thedigital valueof thepixel to thecontrolunit.

The hostcomputerhasa specialinterfaceto communi-
catewith the log-polarcameraandthe pipelineof proces-
sors.It is a customPCI cardunderdevelopmentat this mo-
ment[3]. Insteadof this cardwe usetheEnhancedParallel
Port(EPP)modeof thePCparallelport to connectthecam-
eraand the processorsthrougha parallel cableto the PC.
TheEPPmodehasa typical transferratefrom 500Kbyte/s
to 2 Mbyte/s. This performanceis achieved thanksto the
new registersaddedto theEPPmodethatallow 32bit trans-
fers with a single instruction. EPPallows communicating
bothdataandaddressesbetweenthecameraandthePCus-
ing the EPPData Register and the EPPAddressRegister
respectively. Thecamerasendsdatato thePC,andthePC
canalsorequestinformation(pixel, new image,etc.) to the
camerasendingaddresses.

Log-polarimageshavearesolutionof 128pixelsperring
and76rings;thisis atotalof 9 KBytesperimage.Usingthe
EPPat 1.5 Mbytes/s(half of its maximumperformance)it
is possibleto transferupto 150images/s,morethanenough
for our application.

The cameramakes use of a memory and a D/A con-
verter for the automaticcircuitry for offset compensation
(FPN cancellationcircuit). The memorystoresthe FPN
image. The D/A convertsthis imageto analogvaluesthat
aresubtractedto the imagefrom the sensorin the OPAM.
TheD/A converteris a standard8-bit monolithicdigital-to-
analogconverter. This subtractioncannotbe performedin
thedigital domain,sinceaccuracy is lost. To digitally make
this cancellationit is necessaryto acquireimageswith res-
olutionshigherthan8 bits to preventaccuracy losses;also
theFPNimagehasto bestoredusinghigherprecision.

2.2 Pipeline of processors

Theinclusionof a specificarchitecturein theprocessing
flow of thesystemreducesthetasksto beperformedby the
centralcomputer. A pipelinedarchitecturehasbeencho-
senandimplementedsinceit bettersuitsimage-processing
algorithmswhereseveral simple operationstake placeon
the sameimageflow [4]. Dynamicanalysisis alsoa con-



cernin the kind of applicationswe aim; this is the reason
to put local memoryin theprocessingelements.Two dual
port memoriesareemployedto communicateoneprocess-
ing elementto the next, storingat the sametime interme-
diateresults. Figure3 shows the processorpipeline(only
two processingelementsdrawn) with the structureof each
processingelement.
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Figure 3. Pipeline of two processor s.

Theprocessingunit hasbeendesigned[5] with anAltera
FLEX8000 family CPLD that hassimilar complexity and
capacityascommonFPGAs.Theuseof aCPLDallowsthe
hardware implementationof imageprocessingalgorithms
obtaininghigher processingspeeds.It is also possibleto
reconfigurethealgorithmson line, sincetheCPLDsof this
architecturecanbeprogrammedin few millisecondsby the
hostcomputer. Several tasksactingat different timescan
be deferredto the processorpipeline to relief the central
processorof heavy work.

The algorithm for the time to impact computationhas
beensuccessfullyimplementedin this pipelineof proces-
sors.It hasbeennecessaryto usethreestagesof processing
elements:the first onemakesa generalsmoothingof the
input image,thesecondonecalculatesthespatialandtem-
poralderivatives,the lastonecalculatesthetime to impact
dividing thespatialandtemporalderivatives.

The threestageswork in pipeline synchronizedwith a
16.6 MHz clock signal. The smoothingstagetakes4 cy-
clesto complete;thetemporalderivative andspatialgradi-
entstagetakes6 cycles;finally the division stagetakes16
cycles. This last time fixesthe total computationtime per
pixel in the pipeline. It meansthat processingone image
takesaround12 � s to complete,thusup to 80 imagesper
secondcanbeprocessed.

3 Time to impact computation

An approachingobjectfollowing theoptical axisof the
retinal sensorwill experimentan apparentscalingand its
progresswill be viewed as an expansionmotion. Conse-
quently, its movementcanberepresentedby aradialoptical
flow from thecenterof thesensortowardsits edges.Calcu-
lationsof sucha movementaresimplifiedif it is character-

izedby meansof a log-polarrepresentation.

�����	��

���
� �	� (1)

Scalingin this systembecomea simpletranslationasit
can be seenin figure 4, wherea ring approachingto the
camerais shown.
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Figure 4. Appr oaching object in a log-polar
mapping.

Therefore,it is possibleto establisha relationshipbe-
tweenthe speedof an approachingobjectandits apparent
radialspeed.Let ussupposea P point that is comingto the
objective of the sensorin a directionparallel to its optical
axis,with speed������� asshown in figure5.
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Figure 5. Time to impact calculation.

Being � theobjectivefocal, � thedistancefrom Pto the
opticalaxis(andthereforeconstant),������� thedistancefrom
theprojectionpoint of P on theopticalaxisto theobjective
focus,andlastly,

� ����� the distancefrom the optical axis to
P’, the imageof P on thesensor, thenthefollowing simple
relationshipis accomplished:

�� �����
� �������� (2)

So, ������� , the apparentspeedof P’, will be relatedto������� by:
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Combiningthesetwo equations,it is possibletocalculate
the time to impact . ; it is to say, the time the objectwill
investto collide with thefocusof thesystem:

. )0/ !�"�#+ !�"�#1)
& !�"�# 2!�"�# (4)

Thus,thetime to impactcanbeexpressedastherelation
betweenthe distanceof P’ to the centerof the sensorand
theradialcomponentof thespeedin theimageplane.As a
consequence,it is possibleto traceanimpacttimemap,sim-
ply dividing theratioof eachimagepoint betweentheopti-
cal flow in thatpoint. Whentheseequationsaretranslated
to the log-polarplane,equation(4) becomeseven simpler
sincetheterm & !�"�# disappears(cancelledby thecoordinate
changein

 �!�"�#
).

The
 �!�"�#

is theoptical flow andthereareseveralmeth-
odsfor its computation[7]. In Cartesiancoordinatesit be-
comesa difficult tasksincethespeed

 �!�"�#
hastwo compo-

nents
 43

and
 65

. In log-polarcoordinatesit alsohastwo
components(

 67
,
 98

), but asfar aswe arejust focusingthe
problemof approachingobjects,thepolaropticalflow com-
ponent

 98
is always cero. Having just onecomponentto

calculatesimplifiestheproblemsincetheHornequation[8]
canbe directly employed to calculatethe optical flow and
its inverse,that gives the time to impact as shown in the
following equation:

. );:=<>@?BA?
7
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(5)

where
>

is a constantthat dependson the sensorgeom-
etry, E is the image intensities(image), ?BA?

7 is the image

derivativealongthe F axis(spatialderivative)and ?DA?DC
is the

imagederivative with respectto the time (time derivative).
Thesetwo derivativesaretheonly calculationsto bemade
on the image,andthey areassimpleassubtractions.The
useof log-polarcoordinatesandits applicationto the spe-
cial problemtreatedallow this greatsimplificationrespect
to thesameproblemsolvedin Cartesiancoordinates.

4 Experiments

A simpleexperimenthasbeenperformedusinglabora-
tory conditions. In this experimentwe move two mouse
balls toward the cameranearly following its optical axis.
Thefirst, midle andlastlog-polarimagesof theexperiment
areshown in figure6.

Theblackball startedits movementat 41 cmaway from
the cameraat a speedof 2.54 cm/frame. The white ball
startedat similar position(43 cm) but hadslower speed(2

Figure 6. First, mid dle and last frames of the
sequence .

cm/frame).A total of 16 framesweretaken for theexper-
iment. The result is shown in figure 7 wherethe experi-
mentalpoints along with the theoreticallines are shown.
Theseresultshave beenobtainedaftera smallhigherlevel
post-processingthat includedimagesegmentationto sepa-
ratebothballs,wrongpointsfiltering (pointswith low time
derivative)andfinal meancalculationamongpoints.
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Figure 7. Time to impact for the two balls.

Despitethe small differencesbetweenthe speedof the
balls it is possibleto seethis differencein figure7. When
the balls areaway from the camera(first frames)the time
to impactcalculationis very spreadsincethe error at long
distancesis high. Thiserrorbecomesmallerwhentheballs
approachthecamera.

In orderto testthissamealgorithmin roadenvironments,
a theoreticalexperimenthasbeenstudied. Supposevari-
ousitems(four circularobjectsof differentdimensionsand
speeds)moving towardsa polar camerasystem,following
its opticalaxis:



Object A B C D
Radius(m) 1.6 0.8 1.6 0.8
Speed(km/h) 50 50 100 100

Initially, all theseobjectsareplacedat barelya hundred
metersfrom thefocalof thesystem.Theestimatedtimesto
impact(in seconds)of theseobjectsareshown in figure8,
next to their idealtimes.
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Figure 8. Time to impact of four appr oaching
objects.

This experimentshows that just with few imagesit is
possibleto start calculatingthe time to impact. It must
be noticed that camerais set to take imagesat a rate of
10 framesper second,though it can be increasedup to
80 framesper secondat wish, on accountof the hardware
capabilitiesof thepipelineof processorsusedin this exper-
iment. In this experiment,thoughtheoretical,it is possible
to seethehigherdispersionof thetime to impactcalculated
at longdistances.This is thesameeffectshown in theother
experimentandit is dueto thefinite resolutionof thecam-
era.

5 Conclusions

Thefastmotionof vehiclesin roadsis ahighdemanding
computationproblem,which usually requiressevere real-
time constraints.Detectingtime to impactof anapproach-
ing car, in time to avoid collision canbe of interestto in-
creasecurrentcarsafety.

In orderto solve the problemof calculatingthe time to
impactof objectsin roadlikeenvironments,weputtogether
severalstrategiesto minimizethetime of calculation.First
we employ a log-polarcamerathat selectively reducesthe

amountof datato beprocessedwithout loosingaccuracy, it
simplifiesthecalculationof thetimeto impactfor approach-
ing objects,and it can take up to 200 imagesper second,
that it is sufficient for movementanalysis.Also, we made
useof aspecializedpipelinedprocessingarchitecturebased
on programmabledevicesthat is ableto calculatethe time
to impactatarateof 80 imagespersecondthatis enoughto
detectcarapproachingmovementsof 100Km/h or above.

Finally, this paperhasshown how a retinal sensorcan
beusedto effectively evaluatethetime to impacton scenes
wherethe different involved objectshad considerabledi-
mensionsandspeeds.This pretendsto constitutea first ap-
proachfor movementdetectionon navigation systemsfor
collision prevention,eventhoughtherearestill otherareas
thatcouldtake advantageof suchanapplication.
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