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Abstract— Motion analysis is a computationally demanding
task due to the large amount of data involved and to real-
time requivements. On the other hand, biological visual
schemes are an interesting source for the improvement of
artificial visual systems. In this paper; a biologically inspived
strategy based on delivering and processing pixels, instead
of processing the complete frame, is presented. Only the
pixels of inferest in each frame are processed, taking as that
those which have suffered higher changes. As an example,
two applications ave shown: a tracking algorithm and the
Horn and Schunck optical flow algorithm. Results show that
the implementations of this strategy in both algorithms are
simple, achieving an execution time speed-up while keeping
results similar to classical approaches.
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1. Introduction

Motion analysis is an important issue in artificial vision,
Implementations of these algorithms with real-time restric-
tions are difficult due to the high computational cost of the
algorithms employed and the large amount of data to be
processed. This limitation has already been addressed from
the viewpoint of selective reduction of information using
space-variant sensors [1], [2]. Unfortunately, this approach
is not always applicable. The use of these sensors requires
sometimes a severe algorithm adaptation which often makes
this idea infeasible for data reduction. Industry and academic
sensor researchers have focused their efforts into increasing
frame speed and accuracy of CCD or CMOS sensors,

Commonly, the classical approach for motion analysis
is full image processing, where each image is a snapshot
taken at regular intervals. The normal procedure implies the
application of the processing algorithm for each image in
the sequence. This approach is enough when the system
is capable of detecting different moving objects in few
milliseconds, but if the algorithm is complex, the processing
time can last even seconds for each image in the sequence.
Biological systems work in a different manner: each sensor
cell sends its illumination information asynchronously [3]. In
this way, it is also possible to implement a data-flow policy
in the algorithm execution, processing only those pixels that
have changed most. This strategy will decrease the total
amount of data to be processed.

2. Selective Change-Driven camera and

processing

Some visual sensors have been designed to take advantage
of the selective reduction of information in a biologically
inspired manner. In a similar way, the asynchronous nature
of the biological visual systems has been already partially
emulated [4]. In these artificial sensors the change event
signaling depends on a contrast sensitivity threshold, which
is also found in most biological vision systems. A pixel
change greater than this threshold is considered as a change,
and consequently this pixel is read out and processed. This
strategy has been already utilized for speeding-up differential
motion detection algorithms [5].

The advantages of the individual pixel reading for high-
speed motion estimation of a Selective Change Driven (SCD)
camera have been already presented [6]. In this camera
every pixel works independently of the others. Every pixel
has an analogue memory with the last read-out value. The
absolute difference between the current and the stored value
is compared for all pixels in the sensor; the pixel that differs
most is selected and its illumination level and address are
read out synchronously or asynchronously for processing.
In this way, the pixels will be sent, and thus processed in a
data-flow manner, ordered by its illumination change.

The goal is to know if this technique can accelerate motion
analysis algorithms while keeping an accurate enough mo-
tion estimation, Two motion analysis algorithms have been
adapted to the pixel change-driven strategy to answer this
question.

3. A simple tracking algorithm

Tracking algorithms are a milestone in image sequence
processing and their computational costs worth the trial of
new implementations. Moreover, they are a very useful task
in robot vision, particularly for biologically inspired robots.

This application uses change-driven processing to track
one or several objects in real time; objects can be described
by any means (border detection, textured areas, etc.) as long
as the description can yield the coordinates in the image
plane of a characteristic point of the object. The advantage
on using a change-driven approach arises in those methods
in which the calculations to find the characteristic point can
be accelerated processing only the biggest change.
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The goal is to track one or more mobile objects on
a static background. In order to do this, objects are first
segmented, A simple segmentation algorithm has been cho-
sen which consists on thresholding of the gray level input
image followed by the calculation of the centre of mass of
each detected blob (set of connected pixels). It is important
to point out that neither the number of clements nor the
mechanism for object detection and separation have to be
necessarily those used here. The complete thresholding,
object separation and calculation of centers of mass is
done only for the first frame. Later on, the values are
updated using only the pixels whose gray level has changed
significantly.

3.1 Change-Driven tracking algorithm

Every AT seconds the coordinates of the pixel that has
changed most, as selected by the voting mechanism of the
sensor, together with the value of its gray level variation,
are received. Then, it is checked if that pixel corresponds to
any of the objects being tracked, and if so, to which one.
This is done by getting its distance to each centre of mass;
if the distance is lower than the object size the pixel is as-
signed to the closest object. This implicitly assumes convex
non-overlapping objects. Then, according to the gray level
variation, the pixel is classified as formerly object/currently
background or vice versa, Whatever the case, the gray level
of the affected pixel is updated and the centre of mass of
the involved object is recalculated.

The centre of mass calculation is very fast since it involves
few operations: adding or subtracting the gray level of the
changed pixel to the total sum and incrementing or decre-
menting the total number of pixels in the object, followed
by division of both quantities.

3.1.1 Variable definition

o AT time elapsed between two successive deliveries by
the sensor (equivalent to the sampling time, even it has
not to be uniformy).

s (2n,yn): coordinates of the pixel which has changed
most in the latest AT seconds, so it is said, the pixel
sent by the sensor in a given moment, In the unlikely
case two pixels have changed in exactly the same
amount the sensors selects one according to predefined
rules (for example, the top-most left) but this can be
changed in cach iteration and anyway the discarded
pixels are likely to be selected for later deliveries.

o Ay: the gray level variation of the selected pixel. It is
sent by the sensor together with the coordinates of such
pixel.

o N': number of pixels that currently belong to object 4

o k: number of objects to be tracked.

o (3,,,7,,): coordinates of the center of mass of object
i(i = 1..k).

o pu: threshold for determining the ascription of a pixel to

any object, so that:
if level > y1 — pixel belongs to an object.
if level < u  — pixel belongs to background.

o dy: current gray level of pixel (&, n).

o R;: minimum radius of circumference centered at the
center of mass of object ¢ that contains the object. This
radius is affected by some small tolerance (AR) to
adjust the decision process. This mechanism of decision
could be changed by a more complex one to deal with
the case of non-convex objects or overlapping.

3.1.2 Algorithm calculations

The algorithm is composed by a first step that thresholds
the initial frame, separates the objects by surrounding each
one’s contour, determines the radius of each enclosing cir-
cumference and calculates the initial centre of mass. Then
an endless loop driven by the arrival of new data from the
camera every AT seconds runs as follows:

o Wait until (not_received_new_data)

o Receive (x,Yn, An)-

o Calculate the index 7 of the object whose center of mass
is at minimal distance of (zn,yy) as:

: i 22 _i 2 .
ming (o0~ )’ + (0 - 32)’] G<H) O
Let us call this index p.

o If (2, yn) is closer to (ZE,,, 97, ) than R(p) make

- dy = dn + An
— If the pixel was not a member of the object but it
has become one, i.e. if

{[(dn + An} > p] AND (d, < p)} (2)

update number of pixels of object p as N, — N+
1 and recalculate its center of mass:
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— If the pixel was a member of the object but it is
not now, i.e. if

{[(dn + An) < p) AND (d,, > m} (3

update number of pixels of object p as N — Np—
1 and recalculate its center of mass again as shown
in equations 3 and 4.

The new center of mass is obviously a weighted
mean of the old center and the coordinates of the
new added pixel since
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so when a new pixel arrives
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and similarly for the ¥ coordinate.

o In any other case the received pixel is considered noise
and no action is taken.

4. Optical Flow computation

Optical flow can be defined as the apparent movement of
the intensity level of an image. Unfortunately, the changes in
intensity are not exclusively due to the real movement of the
visible surfaces of the object present in the scene but also to
changes in the illumination or to noise [7]. In these cases an
apparent movement is observed which does not correspond
to real displacements so optical flow is not always equal to
movement field.

Nevertheless, optical flow is one of the main methods
fo estimate movement of objects in the 3D space and
its calculation provides valuable information not only to
artificial systems but also to biological ones.

Unfortunately its calculation is computationally intensive
which uses to prevent or severely limit its use in real time
applications; despite of this its high scientific interest mo-
tivates research on new strategies and techniques to reduce
its calculation time [8], [9], [10], [11], [12], [13].

4.1 Horn and Schunk proposal

One of the most important contributions to the calculation
of the optical flow was provided by Horn and Schunck
[14]. In this work differential techniques (spatio-temporal
gradient) are applied under global restrictions to solve
the aperture problem. Several approximations are assumed,
mainly the conservation of intensity (gray level in any given
point is kept constant along time, except changes due to
displacement, i.e. illumination changes are neglected). Under
this assumption the following equation holds:

I(z,y,t) = I(x + udt,y + vét, L + 6t) (8)

where I(z,y, 1) is the image intensity at point (x,%) and
time ¢ and (u,v) are the horizontal and vertical components
of the optical flow vector measured at (z, y).

Assuming also that image intensity changes in a smooth
way spatially as long as temporally it can be developed in
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series and discard second and higher order terms which leads
to

olds oldy oI o
drdt  Oydt Ot
The procedure used to calculate spatial and temporal
gradients consists on approximating them by a convolution
operation with a 8-neighbour mask that written as a formula
results to be

al 1
I = 5 = gk = Ligr + Tivngane — Lipge +
k41 — Digetr + Lipngerea1 — Ligngeg1)

ar 1
ly=g,= g etak = Tk + Tivnione — Dogroe +
g1k — lijeer + Lpr ek — Bigpneet)

aI 1
Ii=5 = Z(Ii.j,kH = Lijk + Livr,gh+1 — Ligrgk +
ikt = Lk + Livngenke1 — Tip1 j41s)

(10)

where sub indexes (¢, 7, k) refer to pixel with spatial coor-
dinates (4, j) at time .

To eliminate the aperture problem an additional constraint
is needed. Horn and Schunck introduce a method of global
restriction that consists on minimizing the squared magni-
tude of the gradient of the optical flow [15]. Variational
calculus is used to minimize an integral and using the mask
for Laplacian calculation mean values of the optical flow
field components at any point (z,y) read as:

_ il
Uij = pltioyg i+ i +wign) +
i
7y Wimt-1 + Uiy + Uiy, + Wi o)
_ 1
Bij = g1+ V0 vy + vign) +

1
+ 1 im1g-1 F Vo0 g+ Vi)
(11)
which are used in the pair of equations that relate the

optical flow vector from the Laplacian of the image and the
spatio-temporal gradients:

_ - hEa Lged
= g et Tl 12
AP Ty -y ¢
v = -1 Lovu -+ Lo+ I (13)

YRR+
where )\ is a regularization parameter (a Lagrange multi-
plier).
Final determination of the optical flow is done from
these equations through an iterative process over pairs con
changing consecutive images.
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4.2 Change-Driven Optical Flow computation

The implementation of the Horn and Schunck algerithm
using the sirategy based on changes consists on using the
equations that treat the data which are involved because of
the variation of a given pixel at a certain moment. Differently
. to the calculation of optical flow in the whole image, it is
only calculated for the pixels that have changed most their
luminance level.

Initially the algorithm needs the gradient images. Spatial
gradients can be calculated from the first frame and temporal
gradient (that in classical algorithms is extracted from two
consecutive images) is initialized to 0. Since gradients are
calculated only from one frame general expressions are
particularized to:

1

Ly = 5 (Tijer = Jig + Dipagen — i+1,5) (14)
1

s >3 (T3 = g + Divr,g41 — Tig41) (15)

The pixel that has changed most its gray level value is
sent by the SCD camera, together with its row and column.
After that, the following operations are done:

« Recalculate the spatial gradients for those pixels of the
image that are under the influence of the pixel that has
changed. According to equations 14 and 15 and looking
at the formulae for gradient calculation the involved
pixels whose gradients can be modified by the updating
of element (Iz, ;, Iy, ;) will be:

VIZ,',J‘ = (II.',J'JIIi,j_UI:Ci—l,jJIEiul,j—l)
VI'e!'l'.j = (Iyl'-i"Iyi-j—UIyl'*lsJ"I!f‘—l-i—l)

o Recalculate the temporal gradient only for pixel (¢, 7).
"In this case only the luminance variation for the re-
ceived pixel is available. This assumes that all other
variations are negligible, or that they will be taken into
account later when they arrive.
» Do a fixed number of times the following operations:
s Recalculate Laplacian operators (&,7) for all pixel
involved by the variation of pixel (i.j). Due to the
convolution approximation these elements are taken
only as those that surround (z,%).
« Finally use the updated data of gradients and Laplacian
to recalculate the new value of optical flow components
using equations 12 and 13.

5. Experimental results

Since the development of a physical sensor that imple-
ments the change-based approach is still in progress the
comparison between the algorithms using a standard frame-
based camera and those proposed here has been simulated.
It has been assumed a SCD camera with a Winner Take
All circuit [16], which selects the row and column of the

pixel with the largest change. The grey level of this pixel
appears at the sensor output along with its row and column
addresses.

5.1 Change-Driven tracking algorithm results

For this experiment, a video that shows a planar disk
moving with a non uniform trajectory and velocity has been
captured. One of the advantages of the new sensor is the high
rate at which changes are delivered, which will allow it to
track very fast moving objects. To take this into account the
time has been rescaled so that the time difference between
frames is taken as ﬁs and the time used to send a change
(coordinates and value) is 1us. This means that between
two successive points in time in which the received data are
looked the camera could send up to 500 changes.
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Figure 1: X-coordinate computation for the disk tracking
algorithm: vertical lines (classical approach) and continuous
line (change-driven approach).

Figure 1 represents a comparison of the X-coordinate
spatial tracking obtained by both methods measured in
pixels. Points at the top of the verlical lines are those
computed with the classical tracking algorithm (full image
processing). The continuous irregular line shows all the
points computed with the change-driven approach. Using the
change-based approach the maximum temporal resolution
would be determined by the time required to perform the
operations of the algorithm. This is negligible, since it
involves only few additions and multiplications for each
received change so the simulation of 2000 images per second
could even be surpassed and would be limited mainly by
the velocity at which the sensor delivers changes. Notice
the much higher sampling rate which allows the tracking of
objects that move much more rapidly.




5.2 Change-Driven Optical flow results

The well known public Rubik sequence has been used to
calculate the optical flow for each frame using 10 iterations
and representing the flow vectors with modulus bigger or
equal than 0.2; the value of the Lagrange multiplier for the
regularization term has been taken as A = 5. Results are
shown in the figure 2 for the classical algorithm implementa-
tion and for the change-driven implementation with different
number of pixels. In the change-driven version the optical
flow is calculated for every received pixel as long as there is
sufficient time until the next integration period at the SCD
camera. If not all received pixels can be processed those
with a bigger change in their luminance are processed first,
since this is the way they will arrive from the real sensor.
This can be interpreted as an optical flow calculation at a
pixel level instead of at a frame level.
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Figure 2: Optical flow computation for the Rubik sequence.
From left to right and from top to bottom: original algorithm,
change-driven optical flow computation with 1000, 2000 and
4000 pixels, respectively.

Figure 3 shows the mean angular deviation between the
original Horn and Schunk algorithm and the change-driven
implementation for different numbers of processed pixels.
Similarly, figure 4 shows the standard deviation for these
mean values. This angular deviation ¥ between the real
velocity vector components (u,,v.) and the calculated ve-
locity vector (ug,ve) has been computed through the optical
flow error equation:

1
Vg = arccos ( ol 0 ) (16)

V(2 + 2+ 1) (2 + 02+ 1)

The mean error, shown at figure 3, and the standard
deviation, shown at figure 4 is not far from most optical
flow algorithms. As expected, the error decreases and the
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accuracy (meaning results similar to the original algorithm)
is improved as the number of processed pixels increases.
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Figure 3: Mean error for the optical flow change-driven
algorithm with different number of processed pixels.
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Figure 4: Standard deviation for the optical flow change-
driven algorithm with different number of processed pixels.

Experimental measured speed-up of the change-driven
method referenced to the classical one is shown in Figure 5.
The optical flow is calculated for every received pixel as long
as there is sufficient time until the next integration period.
As expected, for a low number of processed pixels there
is a significant speed-up. If the number of pixels increases
then the speed-up decreases. With a number of pixels near
to 4000 still there is a speed-up of 1.2 with an error of 13°
which can be useful for real-time applications.
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Figure 5: Computation time in function of the number of
processed pixels.

6. Conclusion

A change-driven processing instead a full-frame process-
ing for speeding-up motion analysis algorithms has been
presented. The change-driven data flow strategy is based
on processing the pixels that have changed ordered by its
absolute difference value,

This strategy requires an algorithm adaptation (from a
pointer based programs to data-flow based models) and extra
storage to keep track of the intermediate results of preceding
computing stages. Two simple motion analysis algorithms
have been chosen to test the change-driven data flow policy:
a simple tracking algorithm and the Hom and Schunk
optical flow algorithm. Change-driven data flow algorithm
implementations show a significant speed-up giving in many
cases accurate enough results (similar to the original imple-
mentation). Moreover, In the case of the tracking algorithm
the change-driven version gives more accurate results than
the full-processing version.
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